UVA 11987 Almost Union-Find (单点修改的并查集)
此题最难处理的操作就是将一个单点改变集合,而普通的并查集是不支持这种操作的。
当结点p是叶子结点的时候,直接pa[p] = root(q)是可以的,
p没有子结点,这个操作对其它结点不会造成任何影响,
而当p是父结点的时候这种操作会破坏子节点的路径,因此必须保留原来的路径。
我们希望pa[p] = root(q)的同时又保留原来的路径,那么只需要在点上做一个标记,
如果这个点被标记,就沿着新的路径寻找。
此时在修改操作的时候这个点一定是叶子结点,所以可以直接pa[p] = root(q),
而原来的点则变成一个虚点用来保留了原来的路径。
改变集合的操作以及查询都只涉及到单点,这个标记只影响这个点,在二次以及以上的寻找还是要按照原来的路径。
#include<bits/stdc++.h>
using namespace std; const int maxn = 1e5+;
int fa[maxn],fa2[maxn],cnt[maxn],sum[maxn];
bool fg[maxn];
int Find(int x,bool d) {
if(fg[x]&&d) return Find(fa2[x],false);
return x==fa[x]?x:fa[x]=Find(fa[x],false);
}
int main()
{
//freopen("in.txt","r",stdin);
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++) fa[i]=i,fg[i]=false,cnt[i]=,sum[i]=i;
while(m--){
int op,p,q; scanf("%d%d",&op,&p);
if(op!=){
scanf("%d",&q);
int x = Find(p,true), y = Find(q,true);
if(op == ){
if(x!=y){
cnt[y] += cnt[x];
sum[y] += sum[x];
fa[x] = y;
}
}else {
if(x!=y){
cnt[x]--,sum[x]-=p;
cnt[y]++,sum[y]+=p;
fg[p] = true;
fa2[p] = y;
}
}
}else {
int x = Find(p,true);
printf("%d %d\n",cnt[x],sum[x]);
}
}
}
return ;
}
UVA 11987 Almost Union-Find (单点修改的并查集)的更多相关文章
- UVA - 11987 Almost Union-Find(带删除的并查集)
I hope you know the beautiful Union-Find structure. In this problem, you’re to implement something s ...
- Uva 10596 - Morning Walk 欧拉回路基础水题 并查集实现
题目给出图,要求判断不能一遍走完所有边,也就是无向图,题目分类是分欧拉回路,但其实只要判断度数就行了. 一开始以为只要判断度数就可以了,交了一发WA了.听别人说要先判断是否是联通图,于是用并查集并一起 ...
- Mutual Training for Wannafly Union #6 E - Summer Trip(并查集)
题目链接:http://www.spoj.com/problems/IAPCR2F/en/ 题目大意: 给m个数字代表的大小,之后n组数据,两两关联,关联后的所有数字为一组,从小到大输出组数以及对应的 ...
- uva live 7638 Number of Connected Components (并查集)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- UVA 11987 Almost Union-Find 并查集单点修改
Almost Union-Find I hope you know the beautiful Union-Find structur ...
- UVA - 11987 Almost Union-Find[并查集 删除]
UVA - 11987 Almost Union-Find I hope you know the beautiful Union-Find structure. In this problem, y ...
- POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 25904 Accepted: 7682 Descr ...
- 线段树:Segment Tree(单点修改/区间修改模板) C++
线段树是非常有效的数据结构,可以快速的维护单点修改,区域修改,查询最大值,最小值等功能. 同时,它也很重要.如果有一天比赛,你卡在了一道线段树模板题目上,这就真的尴尬了.不过,随着时代的进步,题目也越 ...
- UVA 11987 - Almost Union-Find(并查集)
UVA 11987 - Almost Union-Find 题目链接 题意:给定一些集合,操作1是合并集合,操作2是把集合中一个元素移动到还有一个集合,操作3输出集合的个数和总和 思路:并查集,关键在 ...
随机推荐
- HDU - 5950 Recursive sequence(二项式+矩阵合并+矩阵快速幂)
Recursive sequence Farmer John likes to play mathematics games with his N cows. Recently, they are a ...
- Python:通过一个小案例深入理解IO多路复用
通过一个小案例深入理解IO多路复用 假如我们现在有这样一个普通的需求,写一个简单的爬虫来爬取校花网的主页 import requests import time start = time.time() ...
- 洛谷 P2048 [NOI2010]超级钢琴(优先队列,RMQ)
传送门 我们定义$(p,l,r)=max\{sum[t]-sum[p-1],p+l-1\leq t\leq p+r-1 \}$ 那么因为对每一个$p$来说$sum[p-1]$是一个定值,所以我们只要在 ...
- 剑指Offer的学习笔记(C#篇)-- 栈的压入、弹出序列
题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压 ...
- 制作windows启动盘
·首先:不要使用“老毛桃,大白菜,u深度,电脑店,u大师”等工具,国产流氓软件了解下. ·工具:UltraISO (自行下载)环境:Windows ·Windows 7微软原版无修改的系统镜像下载地址 ...
- IDEAL基于maven创建spark程序
今天创建spark项目遇到一个奇葩问题,困扰了好久,特此记录一下. 1.按照截图创建spark项目 2.项目创建好后,运行报错: Error:scalac: error while loading J ...
- 16.创建与操纵表--SQL
一.新建表 利用CREA TE TA BLE创建表,必须给出下列信息: 新表的名字,在关键字CREA TE TA BLE之后给出: 表列的名字和定义,用逗号分隔: 有的DBMS还要求指定表的位置. C ...
- String常用方法简介
1. 创建String对象的常用方法 (1) String s1 = "mpptest" (2) String s2 = new String(); (3) String s3 ...
- java-可逆加密算法
转载大神的 https://blog.csdn.net/want_water_fish/article/details/73498692 加密算法: 1.单项加密 2.对称加密 3.非对称加密 简单 ...
- 2017 ACM Arabella Collegiate Programming Contest div2的题,部分题目写个题解
F. Monkeying Around 维护点在多少个线段上 http://codeforces.com/gym/101350/problem/F 题意:有m个笑话,每个笑话的区间是[L, R], ...