题目

对于一个给定长度为N的字符串,求它的第K小子串是什么。

输入格式

第一行是一个仅由小写英文字母构成的字符串S

第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。K的意义如题所述。

输出格式

输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1

输入样例

aabc

0 3

输出样例

aab

提示

N<=5*10^5

T<2

K<=10^9

题解

肝了一个中午的论文还是想了好久这种裸题。。

由后缀自动机从根节点走每个节点都是一种子串的性质,我们能很快解决T=0的问题

T=0:

令每个节点值都为1【除了根】,按拓扑逆序向儿子统计

T=1:

每个点不再只是代表一个串了,其代表的串的个数等于其Right集合的大小

那么在parent树上统计每个点子树中的结束节点有多少个

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
int pre[maxn],step[maxn],ch[maxn][26],last,cnt,n,sz[maxn];
int a[maxn],b[maxn],sum[maxn];
char s[maxn];
void ins(int x){
int p = last,np = ++cnt;
last = np; step[np] = step[p] + 1;
while (p && !ch[p][x]) ch[p][x] = np,p = pre[p];
if (!p) pre[np] = 1;
else {
int q = ch[p][x];
if (step[q] == step[p] + 1) pre[np] = q;
else {
int nq = ++cnt; step[nq] = step[p] + 1;
for (int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
pre[nq] = pre[q]; pre[np] = pre[q] = nq;
while (ch[p][x] == q) ch[p][x] = nq,p = pre[p];
}
}
sz[np] = 1;
}
void dfs(int u,int k){
if (k <= sz[u]) return;
k -= sz[u];
for (int i = 0; i < 26; i++){
if (int t = ch[u][i]){
if (k <= sum[t]){
putchar('a'+ i);
dfs(t,k);
return;
}
k -= sum[t];
}
}
}
void solve(){
int T,k;
scanf("%d%d",&T,&k);
REP(i,cnt) b[step[i]]++;
REP(i,cnt) b[i] += b[i - 1];
REP(i,cnt) a[b[step[i]]--] = i;
for (int i = cnt; i; i--){
int u = a[i];
if (T == 1) sz[pre[u]] += sz[u];
else sz[u] = 1;
}
sz[1] = 0;
for (int i = cnt; i; i--){
int u = a[i]; sum[u] = sz[u];
for (int j = 0; j < 26; j++)
sum[u] += sum[ch[u][j]];
}
REP(i,cnt) printf("%d ",sum[i]); puts("");
if (k > sum[1]) {puts("-1"); return;}
dfs(1,k);
}
int main(){
scanf("%s",s + 1);
n = strlen(s + 1); last = cnt = 1;
REP(i,n) ins(s[i] - 'a');
solve();
return 0;
}

BZOJ3998 [TJOI2015]弦论 【后缀自动机】的更多相关文章

  1. [bzoj3998][TJOI2015]弦论-后缀自动机

    Brief Description 给定一个字符串, 您需要求出他的严格k小子串或非严格k小子串. Algorithm Design 考察使用后缀自动机. 首先原串建SAM, 然后如果考察每个状态代表 ...

  2. 【BZOJ3998】[TJOI2015]弦论 后缀自动机

    [BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...

  3. 【bzoj3998】[TJOI2015]弦论 后缀自动机+dp

    题目描述 对于一个给定长度为N的字符串,求它的第K小子串是什么. 输入 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个.T=1则表示不同位置 ...

  4. 【BZOJ-3998】弦论 后缀自动机

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2018  Solved: 662[Submit][Status] ...

  5. BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2152  Solved: 716[Submit][Status] ...

  6. BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串

    http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...

  7. BZOJ 3998 TJOI2015 弦论 后缀自动机+DAG上的dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3998 题意概述:对于一个给定长度为N的字符串,求它的第K小子串是什么,T为0则表示不同位置 ...

  8. BZOJ 3998 [TJOI2015]弦论 ——后缀自动机

    直接构建后缀自动机. 然后. 然后只需要再后缀自动机的go树上类似二分的方法进行查找即可,实际上是“26分”. 然后遇到了处理right集合的问题,然后觉得在go和parent树上上传都是可以的,毕竟 ...

  9. [TJOI2015]弦论(后缀自动机)

    /* 一道在树上乱搞的题目 建立出parent树来, 然后就能搞出每个节点往后能扩展出几个串, 至于位置不同算同一个的话就强制让right集合大小为1即可 然后在树上类比权值线段树找第k大26分统计一 ...

  10. BZOJ.3998.[TJOI2015]弦论(后缀自动机)

    题目链接 \(Description\) 给定字符串S,求其第K小子串.(若T=0,不同位置的相同子串算1个:否则算作多个) \(Solution\) 建SAM,处理出对于每个节点,它和它的所有后继包 ...

随机推荐

  1. CUDA && GPU中dim3介绍

  2. 第十六篇、OC_按比例适配

    // 屏幕高度 #define XMGHeight [UIScreen mainScreen].bounds.size.height // 屏幕宽度 #define XMGWidth [UIScree ...

  3. React 服务端渲染最佳解决方案

    最近在开发一个服务端渲染工具,通过一篇小文大致介绍下服务端渲染,和服务端渲染的方式方法.在此文后面有两中服务端渲染方式的构思,根据你对服务端渲染的利弊权衡,你会选择哪一种服务端渲染方式呢? 什么是服务 ...

  4. 解决国内网络Python2.X 3.X PIP安装模块连接超时问题

    pip国内的一些镜像   阿里云 http://mirrors.aliyun.com/pypi/simple/   中国科技大学 https://pypi.mirrors.ustc.edu.cn/si ...

  5. mysql六:数据备份、pymysql模块

    一 IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测试,可以使用IDE工具 掌握: #1. 测试+链接数据库 #2. 新建库 #3. 新建表,新增字段+类型+约束 #4. 设计表 ...

  6. 37.VUE学习之-表单的综合运用

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  7. Liunx环境--Node部署记录

    1.看看环境里有没有装Node which node 2.找个目录安装 (1)/usr/local/node/download 执行下载 wget https://nodejs.org/dist/v8 ...

  8. libevent源码分析1 ----evnet相关结构体分析

    位于代码event-internal.h中. event_base类似事件的集合,你创建一个事件,必须将该事件指定一个集合. struct event_base { 50     const stru ...

  9. 裸奔着造房子——对政府禁止采购Win8系统的一些看法

    前段时间有消息称政府招标的项目将禁止使用Win8系统,原因是Win8系统的安全架构将有利于暴露敏感信息给微软,而微软的老子是美利坚,老子想要知道什么,儿子当然不敢不从.因此Win8也被打入冷宫,微软多 ...

  10. 线段树[To be continued]

    目录 数据结构--线段树 一.定义 二.性质 三.基本操作 0.结构体 1.建树 2.单点查询 3.单点修改 4.区间修改 5.区间查询 四.题目 单点修改.区域查询模板 五.鸣谢 学姐的Blog 百 ...