tarjan 求无向图的割点

割点,即割去此点后原图可变为两个或多个独立的联通块

一个点 x 是割点,当且仅当存在一个x 的子节点 y ,使得 low[y] >= dfn[x]

对于根节点来说,需要两个满足的节点

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int MAXN = 100005;
int head[MAXN], nume, rot, n, m, dfn[MAXN], low[MAXN], ind, cnt;
bool f[MAXN];
struct edge{
int to, nxt;
}e[MAXN << 1];
void adde(int from, int to) {
e[++nume].to = to;
e[nume].nxt = head[from];
head[from] = nume;
}
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
void tarjan(int u) {
dfn[u] = low[u] = ++ind;
int flag = 0;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u]) {
flag++;
if(u != rot || flag > 1) f[u] = 1;
}
}else low[u] = min(low[u], dfn[v]);
}
}
int main() {
n = init(); m = init();
for(int i = 1; i <= m; i++) {
int u = init(), v = init();
adde(u, v); adde(v, u);
}
for(int i = 1; i <= n; i++) if(!dfn[i]) rot = i, tarjan(i);
for(int i = 1; i <= n; i++) if(f[i]) cnt++;
cout << cnt << endl;
for(int i = 1; i <= n; i++) if(f[i]) printf("%d ", i);
printf("\n");
return 0;
}

洛谷 [P3388] 割点模版的更多相关文章

  1. 洛谷 P3388 割点(割顶) 题解

    题面:     割点性质:     节点 u 如果是割点,当且仅当存在 u 的一个子树,子树中没有连向 u 的祖先的边(返祖边).     换句话说,如果对于一个点u,它的子节点是v,如果low[v] ...

  2. 洛谷 P3388 【模板】割点(割顶)(Tarjan)

    题目链接 https://www.luogu.org/problemnew/show/P3388 模板题 解题思路 什么是割点? 怎样求割点? dfn :即时间戳,一张图的dfs序(dfs遍历时出现的 ...

  3. 洛谷P3388 【模板】割点

    给出一个n个点,m条边的无向图,求图的割点. u是cut vertex的两个条件: 1.存在v使v及其所有后代没有反向边连回u的祖先 2.u是根且有两个以上子节点 dfs一遍 low[u]是u及其后代 ...

  4. 洛谷P3388 【模板】割点(割顶)

    题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

  5. 洛谷P3388 【模板】割点(割顶)(tarjan求割点)

    题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

  6. 洛谷 P3388 【模板】割点(割顶)

    题目链接 题解 今天复习了一下割点. 关于\(tarjan\)这里不多讲 \(dfn\)和\(low\)数组的定义想必大家都知道 仔细观察一下,可以发现 假设便利\(u->v\)这条边 如果 \ ...

  7. 【洛谷P3388】(模板)割点

    [模板]割点 割点集合:一个顶点集合V,删除该集合的所有定点以及与这些顶点相连的边后,原图不连通,就称集合V为割点集合 点连通度:最小割点集合中的顶点数 边连通度:最小割边集合中的边数 割点:割点集合 ...

  8. 洛谷 P3388 【模板】割点

    题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

  9. 洛谷—— P3388 【模板】割点(割顶)

    https://www.luogu.org/problem/show?pid=3388 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n, ...

随机推荐

  1. 【luogu题解】P1546 最短网络 Agri-Net

    题目 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了用最小的消费,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并 ...

  2. FTP、SFTP与FTPS

    先简单介绍下FTP的基础知识 FTP的传输有两种方式:ASCII.二进制. FTP支持两种模式:Standard (PORT方式,主动方式),Passive (PASV,被动方式). 主动模式 FTP ...

  3. CentOS 7+ 环境下安装MySQL

    在CentOS中默认安装有MariaDB,但是我们需要的是MySQL,安装MySQL可以覆盖MariaDB MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可 ...

  4. list变set去重,set交集

    set 取交集 并集 删除没有的元素  不会报错 remove 会报错 https://www.cnblogs.com/alex3714/articles/5717620.html

  5. 7- vue django restful framework 打造生鲜超市 -商品类别数据展示(上)

    Vue+Django REST framework实战 搭建一个前后端分离的生鲜超市网站 Django rtf 完成 商品列表页 并没有将列表页的数据json 与前端的页面展示结合起来 讲解如果将dr ...

  6. 在windows上搭建镜像yum站的方法

    在windows上搭建镜像yum站的方法(附bat脚本)   分类: 运维基本功,其他   方法一:支持rsync的网站 对于常用的centos.Ubuntu.等使用官方yum源在 http://mi ...

  7. 三 python并发编程之多线程-重点

    一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 二 开启线程的两种方式 #方式一 from th ...

  8. TCP/IP网络编程之套接字类型与协议设置

    套接字与协议 如果相隔很远的两人要进行通话,必须先决定对话方式.如果一方使用电话,另一方也必须使用电话,而不是书信.可以说,电话就是两人对话的协议.协议是对话中使用的通信规则,扩展到计算机领域可整理为 ...

  9. complex类的定义、实现

    复数类complex的定义.实现(求模.复数加法) #include <iostream> #include <cmath> using namespace std; clas ...

  10. 有关js的一些小问题

    忘了从哪里找来抄下来的: js执行顺序问题 1.函数的声明和调用 “定义式”函数声明 function fn1() {......} "赋值式"函数声明 var f=functio ...