Harry Potter and the Forbidden Forest

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2089    Accepted Submission(s): 702

Problem Description
Harry Potter notices some Death Eaters try to slip into Castle. The Death Eaters hide in the most depths of Forbidden Forest. Harry need stop them as soon as.

The Forbidden Forest is mysterious. It consists of N nodes numbered from 0 to N-1. All of Death Eaters stay in the node numbered 0. The position of Castle is node n-1. The nodes connected by some roads. Harry need block some roads by magic and he want to minimize the cost. But it’s not enough, Harry want to know how many roads are blocked at least.

 
Input
Input consists of several test cases.

The first line is number of test case.

Each test case, the first line contains two integers n, m, which means the number of nodes and edges of the graph. Each node is numbered 0 to n-1.

Following m lines contains information about edges. Each line has four integers u, v, c, d. The first two integers mean two endpoints of the edges. The third one is cost of block the edge. The fourth one means directed (d = 0) or undirected (d = 1).

Technical Specification

1. 2 <= n <= 1000
2. 0 <= m <= 100000
3. 0 <= u, v <= n-1
4. 0 < c <= 1000000
5. 0 <= d <= 1

 
Output
For each test case:
Output the case number and the answer of how many roads are blocked at least.

 
Sample Input
3
 
 
4 5
0 1 3 0
0 2 1 0
1 2 1 1
1 3 1 1
2 3 3 1
6 7
0 1 1 0
0 2 1 0
0 3 1 0
1 4 1 0
2 4 1 0
3 5 1 0
4 5 2 0
3 6
0 1 1 0
0 1 2 0
1 1 1 1
1 2 1 0
1 2 1 0
2 1 1 1
 
Sample Output
Case 1: 3
Case 2: 2
Case 3: 2
 
Author
aMR @ WHU
 
Source

题目链接:HDU 3987

题意就是在最小割的前提下求最少的割边数,把非0流量边放大,设$maxcap$为可能出现的最大流量值(最好为10的倍数方便计算),变成$cap = cap * maxcap + 1$,0流量的肯定是不能放大的,否则出现1个流量了。

这样一来不会改变边的大小关系,但是流量蕴含了边数,求得的最小割一定由最少割边数构成,最后求得的最小割就是$maxflow/maxcap$,最小割边数就是$maxflow\%maxcap$。

代码:

#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 200010;
struct edge
{
int to, nxt;
LL cap;
edge() {}
edge(int _to, int _nxt, LL _cap): to(_to), nxt(_nxt), cap(_cap) {}
};
edge E[M << 1];
int head[N], tot, d[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, LL cap)
{
E[tot] = edge(t, head[s], cap);
head[s] = tot++;
E[tot] = edge(s, head[t], 0LL);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0LL)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
LL dfs(int s, int t, LL f)
{
if (s == t || !f)
return f;
LL ret = 0LL;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0LL)
{
LL df = dfs(v, t, min<LL>(f, E[i].cap));
if (df > 0LL)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
f -= df;
if (!f)
break ;
}
}
}
if (!ret)
d[s] = -1;
return ret;
}
LL dinic(int s, int t)
{
LL ret = 0LL;
while (bfs(s, t))
ret += dfs(s, t, 0x3f3f3f3f3f3f3f3f);
return ret;
}
int main(void)
{
int tcase;
scanf("%d", &tcase);
for (int q = 1; q <= tcase; ++q)
{
init();
int n, m, i;
scanf("%d%d", &n, &m);
for (i = 0; i < m; ++i)
{
int u, v, d;
LL c;
scanf("%d%d%I64d%d", &u, &v, &c, &d);
if (c)
c = c * 1000000LL + 1LL;
add(u, v, c);
if (d)
add(v, u, c);
}
printf("Case %d: %I64d\n", q, dinic(0, n - 1) % 1000000LL);
}
return 0;
}

HDU 3987 Harry Potter and the Forbidden Forest(边权放大法+最小割)的更多相关文章

  1. hdu 3987 Harry Potter and the Forbidden Forest 求割边最少的最小割

    view code//hdu 3987 #include <iostream> #include <cstdio> #include <algorithm> #in ...

  2. 【hdu 3987】Harry Potter and the Forbidden Forest

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=3987 [Description] 给出一张有n个点的图,有的边又向,有的边无向,现在要你破坏一些路 ...

  3. HDU3987 Harry Potter and the Forbidden Forest(边数最少的最小割)

    方法1:两遍最大流.一遍最大流后,把满流边容量+1,非满流边改为INF:再求最小割即为答案. 我大概想了下证明:能构成最小割的边在第一次跑最大流时都满流,然后按那样改变边容量再求一次最小割,就相当于再 ...

  4. HDU 4971 (最小割)

    Problem A simple brute force problem (HDU 4971) 题目大意 有n个项目和m个问题,完成每个项目有对应收入,解决每个问题需要对应花费,给出每个项目需解决的问 ...

  5. HDU 4289:Control(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 题意:有n个城市,m条无向边,小偷要从s点开始逃到d点,在每个城市安放监控的花费是sa[i],问最小花费可 ...

  6. HDU(2485),最小割最大流

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2485 Destroying the bus stations Time Limit: 40 ...

  7. hdu 3046 Pleasant sheep and big big wolf 最小割

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3046 In ZJNU, there is a well-known prairie. And it a ...

  8. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. hdu 4859 海岸线 最小割

    海岸线 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4859 Description 欢迎来到珠海! 由于土地资源越来越紧张,使得许多海滨城市都只能 ...

随机推荐

  1. JS判断单、多张图片加载完成

    转:http://www.daqianduan.com/6419.html 试想,如果模板中有图片,此时如何判断图片是否加载完成? 在此之前来了解一下jquery的ready与window.onloa ...

  2. ScriptMaker

    0x00 前言 pwn脚本千篇一律,之前也是保存了一份模板,每次都用它,但还是觉得每次都复制一次各种名字还是有的累,于是就写了一份脚本生成器 0x01 ScriptMaker #!/usr/bin/e ...

  3. IBM MQ Explore使用

    一,版本说明: 系统:win10.MQ:V9.04 二.关于帮助文档: 1.读了差不多一大半,个人感觉说明的比较生僻,应该是直译过来的.但是还是可以从这里面学一下基本的操作. 2.对于一些基本的操作, ...

  4. 济南NOIP冬令营 选拔(select)

    选拔(select) Time Limit:2000ms   Memory Limit:128MB 题目描述 LYK对n个女生有好感.第i个女生的身高为ai. LYK要在这些女生中选拔出一个女生来作为 ...

  5. [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏

    设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...

  6. Mysql--数据操作语言(DML)

    定义:数据操作语言主要实现对数据库表中的数据进行操作,主要包括插入(insert).更新(update).删除(delete).查询(select),本节主要介绍增删改. 数据准备: 一.数据的插入( ...

  7. MySQL基础 - 1 数据库基础

    一.数据库基础 1.什么是数据库 1.数据库(database)是保存有组织的数据的容器( 通常是一个文件或一组文件 ) 2.数据库是一个以某种有组织的方式存储的数据集合 注意:数据库软件应该称为DB ...

  8. centos7安装phpstudy

    操作系统:CentOS 7 x86_64 SSH登录工具:FinalSHell 2.9.7 一.安装phpstudy 1.下载完整版: wget -c http://lamp.phpstudy.net ...

  9. Python知识点入门笔记——基本运算和表达式

    变量:Python的变量不需要单独定义,直接在赋值的过程中完成定义. 当直接运行一个没有赋值过的变量时,会报错. 当不需要某个变量时,可以用del来删除 每个变量都占据着一定的内存空间,当变量被删除了 ...

  10. Thread 小总结

    目录 线程概述 线程的定义 线程的启动 线程的状态 线程的方法属性 1.线程概述 线程是一个程序的多个执行路径,执行调度的单元,依托于进程的存在.线不仅可以共享进程的内在,而且还拥有一个属于自己的内存 ...