Harry Potter and the Forbidden Forest

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2089    Accepted Submission(s): 702

Problem Description
Harry Potter notices some Death Eaters try to slip into Castle. The Death Eaters hide in the most depths of Forbidden Forest. Harry need stop them as soon as.

The Forbidden Forest is mysterious. It consists of N nodes numbered from 0 to N-1. All of Death Eaters stay in the node numbered 0. The position of Castle is node n-1. The nodes connected by some roads. Harry need block some roads by magic and he want to minimize the cost. But it’s not enough, Harry want to know how many roads are blocked at least.

 
Input
Input consists of several test cases.

The first line is number of test case.

Each test case, the first line contains two integers n, m, which means the number of nodes and edges of the graph. Each node is numbered 0 to n-1.

Following m lines contains information about edges. Each line has four integers u, v, c, d. The first two integers mean two endpoints of the edges. The third one is cost of block the edge. The fourth one means directed (d = 0) or undirected (d = 1).

Technical Specification

1. 2 <= n <= 1000
2. 0 <= m <= 100000
3. 0 <= u, v <= n-1
4. 0 < c <= 1000000
5. 0 <= d <= 1

 
Output
For each test case:
Output the case number and the answer of how many roads are blocked at least.

 
Sample Input
3
 
 
4 5
0 1 3 0
0 2 1 0
1 2 1 1
1 3 1 1
2 3 3 1
6 7
0 1 1 0
0 2 1 0
0 3 1 0
1 4 1 0
2 4 1 0
3 5 1 0
4 5 2 0
3 6
0 1 1 0
0 1 2 0
1 1 1 1
1 2 1 0
1 2 1 0
2 1 1 1
 
Sample Output
Case 1: 3
Case 2: 2
Case 3: 2
 
Author
aMR @ WHU
 
Source

题目链接:HDU 3987

题意就是在最小割的前提下求最少的割边数,把非0流量边放大,设$maxcap$为可能出现的最大流量值(最好为10的倍数方便计算),变成$cap = cap * maxcap + 1$,0流量的肯定是不能放大的,否则出现1个流量了。

这样一来不会改变边的大小关系,但是流量蕴含了边数,求得的最小割一定由最少割边数构成,最后求得的最小割就是$maxflow/maxcap$,最小割边数就是$maxflow\%maxcap$。

代码:

#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 200010;
struct edge
{
int to, nxt;
LL cap;
edge() {}
edge(int _to, int _nxt, LL _cap): to(_to), nxt(_nxt), cap(_cap) {}
};
edge E[M << 1];
int head[N], tot, d[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, LL cap)
{
E[tot] = edge(t, head[s], cap);
head[s] = tot++;
E[tot] = edge(s, head[t], 0LL);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0LL)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
LL dfs(int s, int t, LL f)
{
if (s == t || !f)
return f;
LL ret = 0LL;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0LL)
{
LL df = dfs(v, t, min<LL>(f, E[i].cap));
if (df > 0LL)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
f -= df;
if (!f)
break ;
}
}
}
if (!ret)
d[s] = -1;
return ret;
}
LL dinic(int s, int t)
{
LL ret = 0LL;
while (bfs(s, t))
ret += dfs(s, t, 0x3f3f3f3f3f3f3f3f);
return ret;
}
int main(void)
{
int tcase;
scanf("%d", &tcase);
for (int q = 1; q <= tcase; ++q)
{
init();
int n, m, i;
scanf("%d%d", &n, &m);
for (i = 0; i < m; ++i)
{
int u, v, d;
LL c;
scanf("%d%d%I64d%d", &u, &v, &c, &d);
if (c)
c = c * 1000000LL + 1LL;
add(u, v, c);
if (d)
add(v, u, c);
}
printf("Case %d: %I64d\n", q, dinic(0, n - 1) % 1000000LL);
}
return 0;
}

HDU 3987 Harry Potter and the Forbidden Forest(边权放大法+最小割)的更多相关文章

  1. hdu 3987 Harry Potter and the Forbidden Forest 求割边最少的最小割

    view code//hdu 3987 #include <iostream> #include <cstdio> #include <algorithm> #in ...

  2. 【hdu 3987】Harry Potter and the Forbidden Forest

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=3987 [Description] 给出一张有n个点的图,有的边又向,有的边无向,现在要你破坏一些路 ...

  3. HDU3987 Harry Potter and the Forbidden Forest(边数最少的最小割)

    方法1:两遍最大流.一遍最大流后,把满流边容量+1,非满流边改为INF:再求最小割即为答案. 我大概想了下证明:能构成最小割的边在第一次跑最大流时都满流,然后按那样改变边容量再求一次最小割,就相当于再 ...

  4. HDU 4971 (最小割)

    Problem A simple brute force problem (HDU 4971) 题目大意 有n个项目和m个问题,完成每个项目有对应收入,解决每个问题需要对应花费,给出每个项目需解决的问 ...

  5. HDU 4289:Control(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 题意:有n个城市,m条无向边,小偷要从s点开始逃到d点,在每个城市安放监控的花费是sa[i],问最小花费可 ...

  6. HDU(2485),最小割最大流

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2485 Destroying the bus stations Time Limit: 40 ...

  7. hdu 3046 Pleasant sheep and big big wolf 最小割

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3046 In ZJNU, there is a well-known prairie. And it a ...

  8. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. hdu 4859 海岸线 最小割

    海岸线 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4859 Description 欢迎来到珠海! 由于土地资源越来越紧张,使得许多海滨城市都只能 ...

随机推荐

  1. 查看电脑是否安装node.js

    打开命令行

  2. js调用后台,后台调用前台等方法总结

    1. javaScript函数中执行C#代码中的函数:方法一:1.首先建立一个按钮,在后台将调用或处理的内容写入button_click中;        2.在前台写一个js函数,内容为docume ...

  3. ML.NET技术研究系列1-入门篇

    近期团队在研究机器学习,希望通过机器学习实现补丁发布评估,系统异常检测.业务场景归纳一下: 收集整理数据(发布相关的异常日志.告警数据),标识出补丁发布情况(成功.失败) 选择一个机器学习的Model ...

  4. vue 自定义动态弹框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. Java - 通过私有构造方法获取实例

  6. MySQL - RIGHT JOIN

    RIGHT JOIN 关键字 RIGHT JOIN 关键字会右表 (table_name2) 那里返回所有的行,即使在左表 (table_name1) 中没有匹配的行. RIGHT JOIN 关键字语 ...

  7. build path导入的jar失效导致找不到类

    今天碰到一个很奇葩的问题,搞起我以后都不敢 build path到jar了 所以我就全部放到lib目录下了,因为之前使用build path导入的jar失效了,一直找不类,具体原因我也不清楚,我之前的 ...

  8. hashlib模块常用功能

    什么是hash hash是一种算法,该算法接受传入的内容,经过运算得到一串hash值 如果把hash算法比喻为一座工厂 那传给hash算法的内容就是原材料 生成的hash值就是生产出的产品 2.为何要 ...

  9. CentOS6.7下的软件安装

    一.JDK安装及其环境变量的配置 **创建一个专门安装软件的文件夹:mkdir /root/apps **解压安装包:tar -zxvf jdk-7u45-linux-x64.tar.gz -C /r ...

  10. 开源数据库中间件-MyCat

    开源数据库中间件-MyCat产生的背景 如今随着互联网的发展,数据的量级也是成指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系型数据库已经无法满足快速查询与插入数据的需求.这 ...