[HDU3516] Tree Construction [四边形不等式dp]
题面:
思路:
这道题有个结论:
把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left[i\right]+y\left[k\right]-y\left[j\right]$
然后就明显可以区间dp了
设$dp\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$中的点连起来的最小花费,然后定义上面那个最小花费为$w\left(i,k,j\right)$
那么转移方程就比较显然了:
$dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k\right]+dp\left[k+1\right]\left[j\right]+w\left(i,k,j\right)\right)$
证明一下可以看出,$w$函数在$k$不变的时候,是满足四边形不等式的
因此可以给$dp$套一个优化,在$O\left(n^2\right)$中解决
这道题目的重难点实际上就是求$w\left(i,k,j\right)$的表达式,求出来就很显然了
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
int n,x[],y[],dp[][],s[][];
int w(int l,int mid,int r){
return x[mid+]-x[l]+y[mid]-y[r];
}
int main(){
int i,j,len,tmp,k;
while(~scanf("%d",&n)){
for(i=;i<=n;i++) x[i]=read(),y[i]=read();
for(i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
for(len=;len<n;len++){
for(i=;i<=n;i++){
j=len+i;if(j>n) break;
dp[i][j]=inf;
for(k=s[i][j-];k<=s[i+][j]&&k<j;k++){
if((tmp=dp[i][k]+dp[k+][j]+w(i,k,j))<dp[i][j]){
dp[i][j]=tmp;s[i][j]=k;
}
}
}
}
printf("%d\n",dp[][n]);
}
}
[HDU3516] Tree Construction [四边形不等式dp]的更多相关文章
- hdu3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...
- HDU 3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...
- HDOJ 3516 Tree Construction 四边形优化dp
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...
- hdu3516 Tree Construction (区间dp+四边形优化)
构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...
- 【整理】石子合并问题(四边形不等式DP优化)
有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWach ...
- [HDU3480] Division [四边形不等式dp]
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...
- [POJ1160] Post Office [四边形不等式dp]
题面: 传送门 思路: dp方程实际上很好想 设$dp\left[i\right]\left[j\right]$表示前$j$个镇子设立$i$个邮局的最小花费 然后状态转移: $dp\left[i\ri ...
- 记忆的轮廓 期望 四边形不等式dp|题解
记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...
- hdu3516 Tree Construction
Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...
随机推荐
- 2017.12.6 计算机算法分析与设计---------Fibonacci数列
(1)题目: 无穷数列1,1,2,3,5,8,13,21,34,55,--,称为Fibonacci数列.它可以递归地定义为: 第n个Fibonacci数可递归地计算如下: int fibonacci( ...
- js数据结构处理--------树结构数据遍历
1.深度遍历 深度遍历利用栈来实现 class Stack { constructor () { this.top = 0, // 栈的长度 this.list = [] } push(item) { ...
- H1ctf-Vote
用来练习IO_FILE利用 glibc-2.23 # coding:utf-8 from pwn import * from FILE import * context.arch = 'amd64' ...
- css中如何把鼠标变成手
css中鼠标放上去变成手型怎么设置:其实就是一个属性的问题, css的cursor属性 cursor:pointer; 其实这个属性我也记了很多,到现在都容易拼写错误,不过好在编辑器有提示. defa ...
- JZOJ 4722. 跳楼机
Description DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧.Srwudi的家是一幢h层的摩天大楼.由于前来学习的蒟蒻越来越多,srwudi改造了一个跳楼机,使得访客可以更方 ...
- 精通SpringBoot--整合Redis实现缓存
今天我们来讲讲怎么在spring boot 中整合redis 实现对数据库查询结果的缓存.首先第一步要做的就是在pom.xml文件添加spring-boot-starter-data-redis.要整 ...
- 嵌入式Linux环境搭建备忘
嵌入式Linux开发平台搭建步骤: 1.安装宿主机Linux系统 如果选用最新的Linux发行版,应改主意其他软件是否能很好的兼容. 2.安装交叉编译器 交叉编译器的版本很多,一般到芯片厂家官网下载官 ...
- HDU 4005 The war 双连通分量 缩点
题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...
- android shape.xml 文件使用
设置背景色可以通过在res/drawable里定义一个xml,如下: <?xml version="1.0" encoding="utf-8"?> ...
- Composer 下载安装类库
安装 Composer 你需要先下载 composer.phar 可执行文件. curl -sS https://getcomposer.org/installer | php composer.js ...