题面:

传送门

思路:

这道题有个结论:

把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left[i\right]+y\left[k\right]-y\left[j\right]$

然后就明显可以区间dp了

设$dp\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$中的点连起来的最小花费,然后定义上面那个最小花费为$w\left(i,k,j\right)$

那么转移方程就比较显然了:

$dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k\right]+dp\left[k+1\right]\left[j\right]+w\left(i,k,j\right)\right)$

证明一下可以看出,$w$函数在$k$不变的时候,是满足四边形不等式的

因此可以给$dp$套一个优化,在$O\left(n^2\right)$中解决

这道题目的重难点实际上就是求$w\left(i,k,j\right)$的表达式,求出来就很显然了

Code:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
int n,x[],y[],dp[][],s[][];
int w(int l,int mid,int r){
return x[mid+]-x[l]+y[mid]-y[r];
}
int main(){
int i,j,len,tmp,k;
while(~scanf("%d",&n)){
for(i=;i<=n;i++) x[i]=read(),y[i]=read();
for(i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
for(len=;len<n;len++){
for(i=;i<=n;i++){
j=len+i;if(j>n) break;
dp[i][j]=inf;
for(k=s[i][j-];k<=s[i+][j]&&k<j;k++){
if((tmp=dp[i][k]+dp[k+][j]+w(i,k,j))<dp[i][j]){
dp[i][j]=tmp;s[i][j]=k;
}
}
}
}
printf("%d\n",dp[][n]);
}
}

[HDU3516] Tree Construction [四边形不等式dp]的更多相关文章

  1. hdu3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...

  2. HDU 3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...

  3. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  4. hdu3516 Tree Construction (区间dp+四边形优化)

    构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...

  5. 【整理】石子合并问题(四边形不等式DP优化)

    有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP    (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWach ...

  6. [HDU3480] Division [四边形不等式dp]

    题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...

  7. [POJ1160] Post Office [四边形不等式dp]

    题面: 传送门 思路: dp方程实际上很好想 设$dp\left[i\right]\left[j\right]$表示前$j$个镇子设立$i$个邮局的最小花费 然后状态转移: $dp\left[i\ri ...

  8. 记忆的轮廓 期望 四边形不等式dp|题解

    记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...

  9. hdu3516 Tree Construction

    Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...

随机推荐

  1. 安装CocoaPods遇到的问题 及其解决

    本人也是第一次安装这个 CocoaPods,所以刚开始也是遇到了很多懵逼的问题,今天终于搞定了,就自己总结一下,如有错误敬请指出,谢谢! 由于之前,对于终端命令行,不是很了解,总感觉很麻烦,所以也一直 ...

  2. linux 硬链接与软链接的区别

      硬链接的特点:不添加新文件 不能跨区建立 不能对目录建立 删除源文件硬链接正常访问   ln 源文件 目标链接文件   软连接的特点:会添加新文件 可以跨区建立 可以对目录建立 删除源文件软连接不 ...

  3. 复习C++_指针、动态分配内存

    注意:++i指的是先计算i+1,然后将其赋给i cout<<str[7]<<endl; //输出a 注:交换失败 注意:delete释放之后,变为迷途指针. 注:n--> ...

  4. SQL数据库从高版本导入低版本

    1. 打开高版本数据库右键–>任务–>生成脚本–>高级–>选择脚本兼容的版本(也就是低版本)–>拉倒最下面选择架构和数据 2. 在低版本里面,先新建一个数据库,名称要和脚 ...

  5. MySQL-Xtrabackup备份还原

    前言 通常我们都是使用xtrabackup工具来备份数据库,它是一个专业的备份工具,先来简单介绍下它. Xtrabackup percona提供的mysql数据库备份工具,惟一开源的能够对innodb ...

  6. JavaScript(E5,6) 正则学习总结学习,可看可不看!

    1.概述 正则表达式(实例)是一种表达文本模式(即字符串结构)的方法. 创建方式有两种方式: 一种是使用字面量,以斜杠表示开始和结束. var regex = /xyz/ 另一种是使用RegExp构造 ...

  7. videojs的使用

    [官网]http://www.videojs.com/ videojs就提供了这样一套解决方案,他是一个兼容HTML5的视频播放工具,早期版本兼容所有浏览器,方法是:提供三个后缀名的视频,并在不支持h ...

  8. [译]The Python Tutorial#10. Brief Tour of the Standard Library

    [译]The Python Tutorial#Brief Tour of the Standard Library 10.1 Operating System Interface os模块为与操作系统 ...

  9. Xadmin后台管理系统搭建基于Django1.11.11+Python3.6

    安装python及Django百度即可 主要介绍Xadmin安装 访问地址:https://github.com/sshwsfc/xadmin  下载 安装好之后,将xamdin目录复制到项目 我放在 ...

  10. 二分答案:Poweroj2461-入门基础之二分答案(二分法的应用)

    传送门:点击打开链接 入门基础之二分答案 Time Limit: 1000 MS Memory Limit: 65536 KBTotal Submit: 179 Accepted: 33 Page V ...