题目链接:

A Boring Question

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
There are an equation.
∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?
We define that (kj+1kj)=kj+1!kj!(kj+1−kj)! . And (kj+1kj)=0 while kj+1<kj.
You have to get the answer for each n and m that given to you.
For example,if n=1,m=3,
When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1;
Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0;
Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0;
Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0;
Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1;
Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1;
Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0;
Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1.
So the answer is 4.
 
Input
The first line of the input contains the only integer T,(1≤T≤10000)
Then T lines follow,the i-th line contains two integers n,m,(0≤n≤109,2≤m≤109)
 
Output
 
For each n and m,output the answer in a single line.
 
Sample Input
 
2
1 2
2 3
 
Sample Output
 
3
13
 
题意:
 
就是求这个式子的值是多少;
 
思路:
 
∑(km,km-1)(km-1,km-2)...(k2,k1)=∑(km,km-1)...(k3,k2)(∑(k2,k1){0<=k1<=k2})=∑(km,km-1)...∑(k3,k2)*2k2 
∑(k3,k2)*2k2 =(1+2)k3;二项式定理,以后也是这样,最后得到的结果为(mn+1-1)/(m-1);
 
AC代码:
 
/************************************************
┆ ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓   ┏━┛ ┆
┆  ┃   ┃  ┆      
┆  ┃   ┗━━━┓ ┆
┆  ┃  AC代马   ┣┓┆
┆  ┃    ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e6+10;
const int maxn=2e3+14;
const double eps=1e-12; LL pow_mod(LL x,LL y)
{
LL s=1,base=x;
while(y)
{
if(y&1)s=s*base%mod;
base=base*base%mod;
y>>=1;
}
return s;
} int main()
{
int t;
read(t);
while(t--)
{
LL n,m;
read(n);read(m);
cout<<(pow_mod(m,n+1)-1+mod)%mod*pow_mod(m-1,mod-2)%mod<<"\n";
}
return 0;
}

  

hdu-5793 A Boring Question(二项式定理)的更多相关文章

  1. HDU 5793 - A Boring Question

    HDU 5793 - A Boring Question题意: 计算 ( ∑(0≤K1,K2...Km≤n )∏(1≤j<m) C[Kj, Kj+1]  ) % 1000000007=? (C[ ...

  2. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  3. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. hdu 5793 A Boring Question(2016第六场多校)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 5793 A Boring Question 多校训练

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1 ...

  7. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

  8. 数学--数论--Hdu 5793 A Boring Question (打表+逆元)

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...

  9. 多校6 1001 HDU5793 A Boring Question (推公式 等比数列求和)

    题解:http://bestcoder.hdu.edu.cn/blog/ 多校6 HDU5793 A Boring Question // #pragma comment(linker, " ...

随机推荐

  1. Oracle 中session和processes的初始设置

    http://blog.163.com/succu/blog/static/193917174201252911727149/ 1.sessions   在初始化参数所设定的限制中,最为人所知的估计就 ...

  2. Struts2学习七----------Struts2后缀

    © 版权声明:本文为博主原创文章,转载请注明出处 Struts2后缀 - Struts2默认后缀是action - Struts2使用默认后缀时*.action和*都是同一个请求 - Struts2自 ...

  3. 开启Java远程调试

    在JDK启动时,加入 -Xrunjdwp:transport=dt_socket,address=9900,server=y,suspend=n -Dcom.sun.management.jmxrem ...

  4. 1-1:CSS3课程入门之属性选择器

    div[name=jewave] 选取属性名为name且属性值是"jewave"的元素 div[name^=jewave]选取属性名为name且属性值以"jewave&q ...

  5. 【Android】图片(文件)上传的请求分析结构

    怎么在android中上传文件,即怎么用Java向服务器上传文件.上传图片,这是个老问题了,在网上能搜到现成的代码,很多朋友用起来也比较熟了,但是为什么这么写,可能很多朋友并不清楚,这篇文章就来分析一 ...

  6. iOS 可选择的购物车

    最近看了淘宝的购物车,于是做了一个可选择的购物车模板. 如果有好的建议请提出,带我日后更新.

  7. Android_YouthArea之ApeendTextView

    这次给我自己的项目打个广告:http://sj.qq.com/myapp/detail.htm?apkName=com.youthcommunity 这款APP 不同于SoHOT是积极的,是年轻人的信 ...

  8. EntityFramework走马观花之CRUD(下)

    我在Entity Framework系列文章的CRUD上篇中介绍了EF的数据查询,中篇谈到了EF的数据更新,下篇则聊聊EF实现CRUD的内部原理. 跟踪实体对象状态 在CRUD上篇和中篇谈到,为了实现 ...

  9. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  10. iOS视频直播用到的协议

    一 .流媒体 1 - 伪流媒体 1.1 扫盲:边下载边播放1.2 伪流媒体:视频不是实时播放的,先把视频放在数据库,再供客户端访问,比如:优酷,爱奇艺等 1.3 特点: 边下边存,文件会保存.遵守了 ...