题目大意:
  给你一个$n(n\leq300000)$个结点的以$1$为根的树,结点有黑白两种颜色,每个点初始权值为$0$。进行以下2种共$m(m\leq300000)$次操作:
    1.给定结点$u$,对于所有的黑点$v$,令${\rm LCA}(u,v)$的权值加上$v$;
    2.改变$u$的颜色。

思路:
  考虑没有操作2的情况,我们可以记录所有结点被询问的次数和所有黑点的编号。最后统计答案时,只需要一个树形DP,求出每个子树内被询问的次数$cnt$和所有黑点的编号之和$sum$即可。$w[x]=\sum cnt[y]\times(sum[x]-sum[y])$。
  考虑加上操作2,本质上就是多了一个表示时间的维度,考虑使用线段树降维,树形DP时只需要线段树合并更新答案即可。时间复杂度$O(n\log n)$。

 #include<list>
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
bool s[N];
int64 w[N];
int m,last[N];
std::list<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
class SegmentTree {
private:
struct Node {
int cnt;
int64 sum;
Node *left,*right;
};
public:
Node *root[N];
void modify(Node *&p,const int &b,const int &e,const int &l,const int &r,const int &x,const int &y) {
p=p?:new Node();
p->cnt+=x;
if(b==l&&e==r) {
p->sum+=y;
return;
}
const int mid=(b+e)>>;
if(l<=mid) modify(p->left,b,mid,l,std::min(mid,r),x,y);
if(r>mid) modify(p->right,mid+,e,std::max(mid+,l),r,x,y);
}
void merge(Node *&p,Node *const &q,const int &b,const int &e,const int &id) {
if(!p||!q) {
p=p?:q;
return;
}
w[id]+=p->cnt*q->sum+q->cnt*p->sum;
p->cnt+=q->cnt;
p->sum+=q->sum;
const int mid=(b+e)>>;
merge(p->left,q->left,b,mid,id);
merge(p->right,q->right,mid+,e,id);
delete q;
}
};
SegmentTree t;
void dfs(const int &x,const int &par) {
for(std::list<int>::iterator i=e[x].begin();i!=e[x].end();i++) {
const int &y=*i;
if(y==par) continue;
dfs(y,x);
t.merge(t.root[x],t.root[y],,m,x);
}
}
int main() {
const int n=getint();m=getint();
for(register int i=;i<=n;i++) {
last[i]=s[i]=getint();
}
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
for(register int i=;i<=m;i++) {
const int opt=getint(),u=getint();
if(opt==) {
t.modify(t.root[u],,m,i,i,,);
if(s[u]) w[u]+=u;
}
if(opt==) {
if(s[u]^=) {
last[u]=i;
} else {
if(i!=) t.modify(t.root[u],,m,last[u],i-,,u);
}
}
}
for(register int i=;i<=n;i++) {
if(s[i]) t.modify(t.root[i],,m,last[i],m,,i);
}
dfs(,);
for(register int i=;i<=n;i++) printf("%lld\n",w[i]);
return ;
}

[XJOI-NOI2015-13-C]白黑树的更多相关文章

  1. 学军NOI训练13 T3 白黑树

    唉,大学军有自己的OJ就是好,无限orz 只有周六的比赛是开放的囧,这场比赛最后因为虚拟机卡住没有及时提交…… 否则就能让大家看到我有多弱了…… 前两题题解写的很详细,可以自己去看,我来随便扯扯T3好 ...

  2. [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】

    题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...

  3. [XJOI NOI2015模拟题13] B 最小公倍数 【找规律】

    题目链接:XJOI - NOI2015-13 - B 题目分析 通过神奇的观察+打表+猜测,有以下规律和性质: 1) 删除的 n 个数就是 1~n. 2) 当 c = 2 时,如果 n + 1 是偶数 ...

  4. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  5. [Data Structure] 红黑树( Red-Black Tree ) - 笔记

    1.  红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍. 2. 红黑树是一个二叉搜索树,并且有 a. 每个节点除了有左.右.父节点的属性外,还有颜色属性,红色或者黑色. b. ( 根属性 ...

  6. 红黑树red-black tree

    书籍:<算法导论>第13章 红黑树性质:1. 每个节点要么red要么black.2. 根节点是black节点.3. 叶子节点是black节点.4. red节点的左右儿子节点都是black节 ...

  7. C++基础_总结

    (1)多态性都有哪些?(静态和动态,然后分别叙述了一下虚函数和函数重载) 多态分为两种:静态和动态.静态主要包括函数重载和模板:动态主要是依靠虚函数实现的. 静态联编:重载函数不加virtual关键字 ...

  8. PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1

    ※★◆●PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1AApprriill 22001166Conte ...

  9. Mac生存手册

    最近刚从Linux转到了Mac系统上,感觉好的地方是再也不折腾了,什么GNOME, KDE, XFCE,各种发行版本都远离我而去了.当然Mac下很多好软件都是要付费的,我只能绕着走了: 1. 命令行, ...

随机推荐

  1. Go语言之反射(三)

    结构体转JSON JSON格式是一种用途广泛的对象文本格式.在Go语言中,结构体可以通过系统提供的json.Marshal()函数进行序列化.为了演示怎么样通过反射获取结构体成员以及各种值的过程,下面 ...

  2. Git的安装及常用操作

    一.Git的安装 1.下载Git,官网地址为:https://git-scm.com/downloads.     2.下载完成之后,双击目录进行安装 3.选择安装目录 4.选择组件,默认即可 5.设 ...

  3. 扩展MarkDown表格

    一直不知道表格中的:是什么意思,看了GcsSloop的这篇文章后恍然大悟,做下记录. 原文链接 第二行分割线部分可以使用 : 来控制内容状态 MarkDown : | 默认 | 靠右 | 居中 | 靠 ...

  4. Analyze Program Runtime Stack

    Introduce: Process Explorer is an advanced process management utility that picks up where Task Manag ...

  5. live 555 freebsd 或centos 7.4 实现代理视频直播服务

    live 555   freebsd 或centos 7.4 实现代理视频直播服务 the live555 media server    在线直播服务器 关于此服务器 此服务是一个无安全的rtsp服 ...

  6. 在windows64位上安装Python3.0

    1.下载安装包 下载地址:https://www.python.org/downloads/ 如果要下载帮助文件:Download Windows help file 如果要下载基于网页的安装程序: ...

  7. 理解点击屏幕的事件响应--->对- (UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event方法的理解

    要理解这两个方法.先了解一下用户触摸屏幕后的事件传递过程. 当用户点击屏幕后,UIApplication 先响应事件,然后传递给UIWindow.如果window可以响应.就开始遍历window的su ...

  8. HDU 4614 Vases and Flowers(线段树+二分)

    Vases and Flowers Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others ...

  9. bzoj3609【HEOI2014】人人尽说江南好

    题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3609 sol :博弈论  通过打表找规律,发现答案是%m循环的,且当m为偶数时取反  因为我太 ...

  10. 远程映射错误 “发生系统错误 1312 指定的登录会话不存在。可能已被终止 IIS 访问 远程共享目录”

    最近和其他公司做接口,需要将数据上传给对方. 我们发送程序部署在前置机上,文件在内网数据中.需要映射到文件服务器后上传数据.本机vs开发是可以映射成功,但是部署到远程的IIS中,就不能成功. 报错:  ...