Basic idea

1.一个文档(document)只有一个主题(topic)

2.主题指的是这个主题下文档中词语是如何出现的

3.在某一主题下文档中经常出现的词语,这个词语在这个主题中也是经常出现的。

4.在某一主题下文档中不经常出现的词语,这个词语在这个主题中也是不经常出现的。

5.由此,概率计算方法可以近似为:

Ranking

当给定查询q时,怎么根据统计语言模型进行排序呢?有三种排序方法,分别是:1.Query-likelihood 2.Document-likelihood

3.Divergence (差异) of query and document models

查询q = (q1,q2,...,qk),MD表示在统计语言模型下的文档。

1.Query-likelihood

Example:

Q = “人民 创造” D1 = “在 漫长 的 历史 进程 中 中国 人民 辛勤 劳动 不懈 探索 勇于 创造 中国 人民 热爱 和平 ”

P(“人民”|MD1)=2/18, P(“创造”|MD1)=1/18

P(Q|MD1) = P(“人民”|MD1)*P(“创造”|MD1) = 2/18 * 1/18

2.Document-likelihood

存在的问题:a.文档的长度相差很大,很难比较 b.由于文档中出现的词很多没有出现在查询中,将会出现零频问题 c.将会出现无意义的作弊网页

解决这些问题的方法:

3.Divergence (差异) of query and document models

上式中w指的是同时出现在q和d中的词语,它的意义是用Q对D进行编码,所需要的位数

零频问题

解决方法:1.拉普拉斯平滑:把每个词的词频都加1。

2.Lindstone correction:把每个词都加一个很小的值ε。

3.Absolute Discounting:把词频不等于0的词减去一个很小的值ε,再把这些值平均分配到词频为1的词上去。

[IR课程笔记]统计语言模型的更多相关文章

  1. [IR课程笔记]向量空间模型(Vector Space Model)

    VSM思想 把文档表示成R|v|上的向量,从而可以计算文档与文档之间的相似度(根据欧氏距离或者余弦夹角) 那么,如何将文档将文档表示为向量呢? 首先,需要选取基向量/dimensions,基向量须是线 ...

  2. [IR课程笔记]Web search

    一.  搜索引擎 组成部分: 1. 网络爬虫(web crawler) 2. 索引系统(indexing system) 3. 搜索系统 (searching system) consideratio ...

  3. [IR课程笔记]Query Refinement and Relevance Feedback

    相关反馈的两种类型: “真实”的相关反馈: 1. 系统返回结果 2. 用户提供一些反馈 3. 系统根据这些反馈,返回一些不同的,更好的结果 “假定”的相关反馈 1. 系统得到结果但是并不返回结果 2. ...

  4. [IR课程笔记]Hyperlink-Induced Topic Search(HITS)

    两个假设 1. 好的hub pages: 好的对某个主题的hub pages 链接许多好的这个主题的authoritative pages. 2. 好的authoritative pages: 好的对 ...

  5. [IR课程笔记]Page Rank

    主要目的: 在网络信息检索中,对每个文档的重要性作出评价. Basic Idea: 如果有许多网页链接到某一个网页,那么这个网页比较重要. 如果某个网页被一个权重较大的网页链接,那么这个网页比较重要. ...

  6. [IR课程笔记]概率检索模型

    几个符号意义: R:相关文档集 NR:不相关文档集 q:用户查询 dj:文档j 1/0风险情况 PRP(probability ranking principle):概率排序原理,利用概率模型来估计每 ...

  7. 操作系统学习笔记----进程/线程模型----Coursera课程笔记

    操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...

  8. 深度学习课程笔记(二)Classification: Probility Generative Model

    深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw ...

  9. ng-深度学习-课程笔记-0: 概述

    课程概述 这是一个专项课程(Specialization),包含5个独立的课程,学习这门课程后做了相关的笔记记录. (1) 神经网络和深度学习 (2)  改善深层神经网络:超参数调试,正则化,优化 ( ...

随机推荐

  1. iOS-开发者账号失效后是否还可以打包

    参考链接:https://www.jianshu.com/p/601f596e8550

  2. 001为什么Linux使用~作为家目录?为什么vim用hjkl作为方向键?

  3. Python语言 介绍

    一.python介绍python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语 ...

  4. git上传(本地和远程有冲突时)

    一. 冲突的产生:在上次git同步(上传)之后,本地和远程均有更改 二. 处理 1. 丢弃本地,采用远程: git checkout 冲突文件及其路径 如: git checkout bzrobot_ ...

  5. tomcat启动报异常(一)

    异常问题:Caused by: java.lang.IllegalStateException: Unable to complete the scan for annotations for web ...

  6. arch 安装

    xfce参考 http://my.oschina.net/u/1408707/blog/182581#OSC_h2_6 chm阅读 – chmsee作为一个苦逼的码农,要忍受各种chm文件的蹂躏,这个 ...

  7. Extjs grid增加或删除列后记住滚动条的位置

    IE下验证好使. { text: "Del", icon: 'Scripts/Ext/resources/images/icons/application_form_delete. ...

  8. AndroidStudio怎样导入jar包

    来自:http://jingyan.baidu.com/article/e6c8503c7190b7e54f1a1893.html AndroidStudio用于开发安卓Apk非常地方便,但是它的很多 ...

  9. jquery 查找子元素的几种方法

    <div class="tm-clear tb-hidden tm_brandAttr" id="J_BrandAttr" style="dis ...

  10. python得到最长递增子串长度及起始位置【转】

    def incSeq(seq): start = 0 for i in xrange(1, len(seq)): if seq[i] < seq[i-1]: yield start, i - s ...