CodeForces - 385E Bear in the Field —— 矩阵快速幂
题目链接:https://vjudge.net/problem/CodeForces-385E
1 second
256 megabytes
standard input
standard output
Our bear's forest has a checkered field. The checkered field is an n × n table, the rows are numbered from 1 to n from top to bottom, the columns are numbered from 1 to n from left to right. Let's denote a cell of the field on the intersection of row x and column y by record (x, y). Each cell of the field contains growing raspberry, at that, the cell (x, y) of the field contains x + y raspberry bushes.
The bear came out to walk across the field. At the beginning of the walk his speed is (dx, dy). Then the bear spends exactly t seconds on the field. Each second the following takes place:
- Let's suppose that at the current moment the bear is in cell (x, y).
- First the bear eats the raspberry from all the bushes he has in the current cell. After the bear eats the raspberry from k bushes, he increases each component of his speed by k. In other words, if before eating the k bushes of raspberry his speed was (dx, dy), then after eating the berry his speed equals (dx + k, dy + k).
- Let's denote the current speed of the bear (dx, dy) (it was increased after the previous step). Then the bear moves from cell (x, y) to cell (((x + dx - 1) mod n) + 1, ((y + dy - 1) mod n) + 1).
- Then one additional raspberry bush grows in each cell of the field.
You task is to predict the bear's actions. Find the cell he ends up in if he starts from cell (sx, sy). Assume that each bush has infinitely much raspberry and the bear will never eat all of it.
The first line of the input contains six space-separated integers: n, sx, sy, dx, dy, t(1 ≤ n ≤ 109; 1 ≤ sx, sy ≤ n; - 100 ≤ dx, dy ≤ 100; 0 ≤ t ≤ 1018).
Print two integers — the coordinates of the cell the bear will end up in after t seconds.
5 1 2 0 1 2
3 1
1 1 1 -1 -1 2
1 1
Operation a mod b means taking the remainder after dividing a by b. Note that the result of the operation is always non-negative. For example, ( - 1) mod 3 = 2.
In the first sample before the first move the speed vector will equal (3,4) and the bear will get to cell (4,1). Before the second move the speed vector will equal (9,10) and he bear will get to cell (3,1). Don't forget that at the second move, the number of berry bushes increased by 1.
In the second sample before the first move the speed vector will equal (1,1) and the bear will get to cell (1,1). Before the second move, the speed vector will equal (4,4) and the bear will get to cell (1,1). Don't forget that at the second move, the number of berry bushes increased by 1.
题解:
1.为了方便取模,把x、y轴都改成从0开始,最后加1即可。设(sx[t], sy[t])为t时刻的位置,(dx[t], dy[t])为从t-1到t时间段的速度(偏移量),根据题意,可得:
dx[t] = dx[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1
dy[t] = dy[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1
sx[t] = sx[t-1] + dx[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1
sy[t] = sy[t-1] + dy[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1
2.根据上述递推式,构造矩阵求解即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; int MOD;
const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j]%MOD+MOD)%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA tmp = {
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,
}; int main()
{
LL n, sx, sy, dx, dy, t;
while(scanf("%lld%lld%lld%lld%lld%lld",&n,&sx,&sy,&dx,&dy,&t)!=EOF)
{
MOD = n;
MA s = tmp;
s = qpow(s, t); sx--; sy--;
LL a[] = {dx,dy,sx,sy,,};
sx = sy = ;
for(int i = ; i<Size; i++)
{
sx += (1LL*s.mat[][i]*a[i]%MOD+MOD)%MOD, sx %= MOD;
sy += (1LL*s.mat[][i]*a[i]%MOD+MOD)%MOD, sy %= MOD;
}
printf("%lld %lld\n", sx+, sy+);
}
}
CodeForces - 385E Bear in the Field —— 矩阵快速幂的更多相关文章
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- Codeforces 514E Darth Vader and Tree 矩阵快速幂
Darth Vader and Tree 感觉是个很裸的矩阵快速幂, 搞个100 × 100 的矩阵, 直接转移就好啦. #include<bits/stdc++.h> #define L ...
- Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...
- CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解
思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...
- codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)
题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...
- Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...
- Codeforces 696D Legen...(AC自动机 + 矩阵快速幂)
题目大概说给几个字符串,每个字符串都有一个开心值,一个串如果包含一次这些字符串就加上对应的开心值,问长度n的串开心值最多可以是多少. POJ2778..复习下..太弱了都快不会做了.. 这个矩阵的乘法 ...
- Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)
Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...
- Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)
题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...
随机推荐
- 思科CCIE全新升级,SDN/SD-WAN成重头戏!
CCIE,全称Cisco Certified Internetwork Expert,是美国Cisco公司于1993年开始推出的专家级认证考试.被全球公认为IT业最权威的认证,是全球Internetw ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- Java中获取ServletContext的方法
Servlet: this.getServletContext() this.getServletConfig().getServletContext() request.getSession().g ...
- 八卦某 G 的前端开发方式及流程--百度FEX前端nwind信息搜集神技能
他山之石,可以攻玉. 话说本人从毕业到现在一直在某 B 公司工作,前些年折腾过不少开发方式和工具,但总觉得或许有更好的方案,所以很好奇其它公司内部是如何工作的,我曾经浏览过某 Y 公司内部无所不包的 ...
- Java Unsafe类
参考了这篇文章:http://blog.csdn.net/aesop_wubo/article/details/7537278 <JAVA并发编程学习笔记之Unsafe类> Unsafe开 ...
- poj-3744-Scout YYF I-矩阵乘法
f[i]=f[i-1]*p+f[i-2]*(1-p); 正好能够用矩阵加速. . . . #include<stdio.h> #include<string.h> #inclu ...
- HeadFirst设计模式 之 C++实现(三):Decorator(装饰者模式)
装饰者模式是非常有意思的一种设计模式,你将可以在不改动不论什么底层代码的情况下.给你的(或别人的)对象赋予新的职责. 不是使用继承每回在编译时超类上改动代码,而是利用组合(composition)和托 ...
- css控制打印时只显示指定区域
CreateTime--2017年9月26日08:16:04 Author:Marydon css控制打印时只显示指定区域 思路: 1.使用打印命令@media print: 2.控制执行打印命令 ...
- 【转载】C#扫盲之:带你掌握C#的扩展方法、以及探讨扩展方法的本质、注意事项
1.为什么需要扩展方法 .NET3.5给我们提供了扩展方法的概念,它的功能是在不修改要添加类型的原有结构时,允许你为类或结构添加新方法. 思考:那么究竟为什么需要扩展方法呢,为什么不直接修改原有类型呢 ...
- 华为P7电信4G版刷机包 EMUI2.3 官方B125 第3版 精简 ROOT
ROM介绍 基于底包至 B125 SP03解包制作 增加自己订制的超美丽EMUI 2.3专用的全局主题 自调刷机脚本,全部权限完美百分百与官方原版相贴合. 加入Root权限并使用SuperSU 2.0 ...