题目链接:https://vjudge.net/problem/CodeForces-385E

E. Bear in the Field
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Our bear's forest has a checkered field. The checkered field is an n × n table, the rows are numbered from 1 to n from top to bottom, the columns are numbered from 1 to n from left to right. Let's denote a cell of the field on the intersection of row x and column y by record (x, y). Each cell of the field contains growing raspberry, at that, the cell (x, y) of the field contains x + y raspberry bushes.

The bear came out to walk across the field. At the beginning of the walk his speed is (dx, dy). Then the bear spends exactly t seconds on the field. Each second the following takes place:

  • Let's suppose that at the current moment the bear is in cell (x, y).
  • First the bear eats the raspberry from all the bushes he has in the current cell. After the bear eats the raspberry from k bushes, he increases each component of his speed by k. In other words, if before eating the k bushes of raspberry his speed was (dx, dy), then after eating the berry his speed equals (dx + k, dy + k).
  • Let's denote the current speed of the bear (dx, dy) (it was increased after the previous step). Then the bear moves from cell (x, y) to cell (((x + dx - 1) mod n) + 1, ((y + dy - 1) mod n) + 1).
  • Then one additional raspberry bush grows in each cell of the field.

You task is to predict the bear's actions. Find the cell he ends up in if he starts from cell (sx, sy). Assume that each bush has infinitely much raspberry and the bear will never eat all of it.

Input

The first line of the input contains six space-separated integers: nsxsydxdyt(1 ≤ n ≤ 109; 1 ≤ sx, sy ≤ n;  - 100 ≤ dx, dy ≤ 100; 0 ≤ t ≤ 1018).

Output

Print two integers — the coordinates of the cell the bear will end up in after t seconds.

Examples
input
5 1 2 0 1 2
output
3 1
input
1 1 1 -1 -1 2
output
1 1
Note

Operation a mod b means taking the remainder after dividing a by b. Note that the result of the operation is always non-negative. For example, ( - 1) mod 3 = 2.

In the first sample before the first move the speed vector will equal (3,4) and the bear will get to cell (4,1). Before the second move the speed vector will equal (9,10) and he bear will get to cell (3,1). Don't forget that at the second move, the number of berry bushes increased by 1.

In the second sample before the first move the speed vector will equal (1,1) and the bear will get to cell (1,1). Before the second move, the speed vector will equal (4,4) and the bear will get to cell (1,1). Don't forget that at the second move, the number of berry bushes increased by 1.

题解:

1.为了方便取模,把x、y轴都改成从0开始,最后加1即可。设(sx[t], sy[t])为t时刻的位置,(dx[t], dy[t])为从t-1到t时间段的速度(偏移量),根据题意,可得:

dx[t] = dx[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1

dy[t] = dy[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1

sx[t] = sx[t-1] +  dx[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1

sy[t] = sy[t-1] +  dy[t-1] + sx[t-1] +1 + sy[t-1]+1 + t-1

2.根据上述递推式,构造矩阵求解即可。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; int MOD;
const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j]%MOD+MOD)%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA tmp = {
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,
}; int main()
{
LL n, sx, sy, dx, dy, t;
while(scanf("%lld%lld%lld%lld%lld%lld",&n,&sx,&sy,&dx,&dy,&t)!=EOF)
{
MOD = n;
MA s = tmp;
s = qpow(s, t); sx--; sy--;
LL a[] = {dx,dy,sx,sy,,};
sx = sy = ;
for(int i = ; i<Size; i++)
{
sx += (1LL*s.mat[][i]*a[i]%MOD+MOD)%MOD, sx %= MOD;
sy += (1LL*s.mat[][i]*a[i]%MOD+MOD)%MOD, sy %= MOD;
}
printf("%lld %lld\n", sx+, sy+);
}
}

CodeForces - 385E Bear in the Field —— 矩阵快速幂的更多相关文章

  1. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

  2. Codeforces 514E Darth Vader and Tree 矩阵快速幂

    Darth Vader and Tree 感觉是个很裸的矩阵快速幂, 搞个100 × 100 的矩阵, 直接转移就好啦. #include<bits/stdc++.h> #define L ...

  3. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  4. CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解

    思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...

  5. codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)

    题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)

    传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...

  7. Codeforces 696D Legen...(AC自动机 + 矩阵快速幂)

    题目大概说给几个字符串,每个字符串都有一个开心值,一个串如果包含一次这些字符串就加上对应的开心值,问长度n的串开心值最多可以是多少. POJ2778..复习下..太弱了都快不会做了.. 这个矩阵的乘法 ...

  8. Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)

    Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...

  9. Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)

    题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...

随机推荐

  1. const T、const T*、T *const、const T&、const T*& 的区别

    原文地址: http://blog.csdn.net/luoweifu/article/details/45600415 这里的T指的是一种数据类型,可以是int.long.doule等基本数据类型, ...

  2. 同源策略Same-origin policy

     同源策略Same-origin policy 同源策略Same-origin policy是Web应用的一种安全基础策略.它规定同一源中,页面包含的脚本可以访问该源下的其他页面的数据.只有当网址中的 ...

  3. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  4. Revolving Digits

    题面 [题目描述]: 有一天,Silence对可以旋转的正整数十分感兴趣.在旋转操作中,他可以把后面的数字按照原位置不动地搬到剩下位置的前面.当然,他也可以完全不动这串数字.比如,他可以把123变为1 ...

  5. 利用NSString的Hash方法比较字符串

    实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...

  6. 【OpenGL】OpenGL帧缓存对象(FBO:Frame Buffer Object) 【转】

    http://blog.csdn.net/xiajun07061225/article/details/7283929/ OpenGL Frame BufferObject(FBO) Overview ...

  7. python pyqtgraph 保存图片到本地

    pyqtgraph官方给的示例居然会报错2333 官方文档传送门:#####pyqtgraph export pyqtgraph支持在可视化窗口中右键保存(Exporting from the GUI ...

  8. margin: 0 auto; 元素水平居中布局无效

    失效原因: 要给居中的元素一个宽度,否则无效. 该元素一定不能浮动或绝对定位,否则无效. 在HTML中使用<center></center>标签,需考虑好整体构架,否者全部元素 ...

  9. PS 基础知识 CMYK全称是什么

    已解决 请问谁知道CMYK四色的英文全称? 悬赏分:20 - 解决时间:2006-9-6 16:23 C代表什么颜色?英文全称是什么? M代表什么颜色?英文全称是什么? Y代表什么颜色?英文全称是什么 ...

  10. 解题报告 之 HDU5288 OO&#39; s Sequence

    解题报告 之 HDU5288 OO' s Sequence Description OO has got a array A of size n ,defined a function f(l,r) ...