题目描述

JOI君有N个装在手机上的挂饰,编号为1...N。 JOI君可以将其中的一些装在手机上。
JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他挂件的挂钩。每个挂件要么直接挂在手机上,要么挂在其他挂件的挂钩上。直接挂在手机上的挂件最多有1个。
此外,每个挂件有一个安装时会获得的喜悦值,用一个整数来表示。如果JOI君很讨厌某个挂饰,那么这个挂饰的喜悦值就是一个负数。
JOI君想要最大化所有挂饰的喜悦值之和。注意不必要将所有的挂钩都挂上挂饰,而且一个都不挂也是可以的。

输入

第一行一个整数N,代表挂饰的个数。
接下来N行,第i行(1<=i<=N)有两个空格分隔的整数Ai和Bi,表示挂饰i有Ai个挂钩,安装后会获得Bi的喜悦值。 

输出

输出一行一个整数,表示手机上连接的挂饰总和的最大值

样例输入

5
0 4
2 -2
1 -1
0 1
0 3

样例输出

5


题解

背包dp

根据题意很容易想到dp状态:f[i][j]表示从前i个物品中选择某些物品,使得剩下的挂钩数量为j的最大喜悦值。

但是这样会TLE。

思考:一个物品,最多只会消耗1个挂钩。因此如果已经有了大于等于超过n个挂钩,说明全部物品都可以挂上,记录过多的状态也就没有了意义。

所以我们把j的上界设为n即可,dp时取j+ai和n的最小值作为状态即可。

注意要先按照挂钩数量从大到小排序(其实不排序也行,就是会比较麻烦)

代码中把状态压到了一维,需要注意一下更新顺序啥的。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
struct data
{
int a , b;
}w[N];
int f[N];
bool cmp(data x , data y)
{
return x.a > y.a;
}
int main()
{
int n , i , j , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &w[i].a , &w[i].b) , w[i].a -- ;
sort(w + 1 , w + n + 1 , cmp);
memset(f , 0xc0 , sizeof(f)) , f[1] = 0;
for(i = 1 ; i <= n ; i ++ )
{
if(~w[i].a) for(j = n ; j ; j -- ) f[min(j + w[i].a , n)] = max(f[min(j + w[i].a , n)] , f[j] + w[i].b);
else for(j = 1 ; j <= n ; j ++ ) f[j - 1] = max(f[j - 1] , f[j] + w[i].b);
for(j = 0 ; j <= n ; j ++ ) ans = max(ans , f[j]);
}
printf("%d\n" , ans);
return 0;
}

【bzoj4247】挂饰 背包dp的更多相关文章

  1. bzoj4247: 挂饰(背包dp)

    4247: 挂饰 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1136  Solved: 454[Submit][Status][Discuss] ...

  2. BZOJ 4247 挂饰 背包DP

    4247: 挂饰 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  3. bzoj4247: 挂饰(背包)

    4247: 挂饰 题目:传送门 题解: 看完题目很明显的一道二维背包(一开始还推错了) 设f[i][j]表示前i个挂饰选完(可以有不选)之后还剩下j个挂钩的最大值(j最多贡献为n) 那么f[i][j] ...

  4. [BZOJ4247]挂饰(DP)

    当最终挂饰集合确定了,一定是先挂挂钩多的在挂挂钩少的. 于是按挂钩从大到小排序,然后就是简单的01背包. #include<cstdio> #include<algorithm> ...

  5. 【BZOJ4247】挂饰 背包

    [BZOJ4247]挂饰 Description JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上. JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他 ...

  6. 洛谷P4138 挂饰 背包

    正解:背包dp 解题报告: 昂先放链接qwq 感觉还挺妙的,,,真的我觉得我直接做可能是想不到背包的,,,我大概想不出是个背包的QAQ 但是知道是背包之后觉得,哦,好像长得也确实挺背包的吼,而且其实是 ...

  7. BZOJ4247挂饰

    Description     JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上.     JOI君的挂饰有一些与众不同--其中的一些挂饰附有可以挂其他挂件的挂钩 ...

  8. bzoj千题计划197:bzoj4247: 挂饰

    http://www.lydsy.com/JudgeOnline/problem.php?id=4247 先把挂饰按挂钩数量从大到小排序 dp[i][j]前i个挂饰,剩下j个挂钩的最大喜悦值 分挂和不 ...

  9. BZOJ4247 : 挂饰

    首先将挂饰按照挂钩个数从大到小排序,然后DP 设f[i][j]处理完前i个挂饰,还有j个多余挂钩的最大喜悦值,则 f[0][1]=0 f[i][j]=max(f[i-1][max(j-a[i],0)+ ...

随机推荐

  1. db2疑难解决

    http://www-01.ibm.com/support/knowledgecenter/?lang=zh#!/SSEPGG_9.5.0/com.ibm.db2.luw.messages.sql.d ...

  2. ansible 通过堡垒机/跳板机 访问目标机器需求实战(ssh agent forward)

    一. 需求背景: 在我们使用ansible的过程中经常会遇到这样的情况,我们要管理的机器都在内网中,这些内网机器的登录都是通过跳板机或者堡垒机登录.我们的ansible机器不能直接管理到这些后端的机器 ...

  3. Python 继承、派生、组合、接口、抽象类

    继承是一种是的关系,和组合对比,组合是一种有的关系,这两者都是解决代用重用问题的 继承 注意:继承不是遗传,在显示角度中,是通过对象抽象成类,再把这些类抽象成一个,就是父类.是自下而上的过程,在程序中 ...

  4. 安装搭配VUE使用的UI框架ElementUI

    可以搭配vue的UI框架有几个,我用的是element-ui,现在呢,我要在复习一遍 1.vue init webpack-simple element-ui2.cd element-ui3.npm ...

  5. C#算术运算符

    一.C#算术运算符 C#语言的算术运算符主要用于数学计算中. 二.示例 using System;using System.Collections.Generic;using System.Linq; ...

  6. 01_7_Struts_用Action的属性接收参数

    01_7_Struts_用Action的属性接收参数 1. 配置struts.xml文件 <package name="user" namespace="/user ...

  7. 【转】浅谈对主成分分析(PCA)算法的理解

    以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...

  8. numpy中常用的函数

    1. power(x1, x2) 对x1中的每个元素求n次方.不会改变x1上午shape. 2. sum(a, axis=None, dtype=None, out=None, keepdims=Fa ...

  9. shell 练习题 - 第三周

    1.编写脚本/root/bin/backup.sh,可实现每日将/etc/目录备份到 /root/etcYYYY-mm-dd中 #!/bin/bash echo "start backup& ...

  10. Helm入门

    前言:Helm是GO语言编写的,是管理kubernetes集群中应用程序包的客户端工具.Helm是类似于centos上的yum工具或Ubuntu上的apt-get工具.对于应用发布者而言,可以通过He ...