【bzoj4247】挂饰 背包dp
题目描述
输入
输出
样例输入
5
0 4
2 -2
1 -1
0 1
0 3
样例输出
5
题解
背包dp
根据题意很容易想到dp状态:f[i][j]表示从前i个物品中选择某些物品,使得剩下的挂钩数量为j的最大喜悦值。
但是这样会TLE。
思考:一个物品,最多只会消耗1个挂钩。因此如果已经有了大于等于超过n个挂钩,说明全部物品都可以挂上,记录过多的状态也就没有了意义。
所以我们把j的上界设为n即可,dp时取j+ai和n的最小值作为状态即可。
注意要先按照挂钩数量从大到小排序(其实不排序也行,就是会比较麻烦)
代码中把状态压到了一维,需要注意一下更新顺序啥的。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
struct data
{
int a , b;
}w[N];
int f[N];
bool cmp(data x , data y)
{
return x.a > y.a;
}
int main()
{
int n , i , j , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &w[i].a , &w[i].b) , w[i].a -- ;
sort(w + 1 , w + n + 1 , cmp);
memset(f , 0xc0 , sizeof(f)) , f[1] = 0;
for(i = 1 ; i <= n ; i ++ )
{
if(~w[i].a) for(j = n ; j ; j -- ) f[min(j + w[i].a , n)] = max(f[min(j + w[i].a , n)] , f[j] + w[i].b);
else for(j = 1 ; j <= n ; j ++ ) f[j - 1] = max(f[j - 1] , f[j] + w[i].b);
for(j = 0 ; j <= n ; j ++ ) ans = max(ans , f[j]);
}
printf("%d\n" , ans);
return 0;
}
【bzoj4247】挂饰 背包dp的更多相关文章
- bzoj4247: 挂饰(背包dp)
4247: 挂饰 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1136 Solved: 454[Submit][Status][Discuss] ...
- BZOJ 4247 挂饰 背包DP
4247: 挂饰 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id ...
- bzoj4247: 挂饰(背包)
4247: 挂饰 题目:传送门 题解: 看完题目很明显的一道二维背包(一开始还推错了) 设f[i][j]表示前i个挂饰选完(可以有不选)之后还剩下j个挂钩的最大值(j最多贡献为n) 那么f[i][j] ...
- [BZOJ4247]挂饰(DP)
当最终挂饰集合确定了,一定是先挂挂钩多的在挂挂钩少的. 于是按挂钩从大到小排序,然后就是简单的01背包. #include<cstdio> #include<algorithm> ...
- 【BZOJ4247】挂饰 背包
[BZOJ4247]挂饰 Description JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上. JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他 ...
- 洛谷P4138 挂饰 背包
正解:背包dp 解题报告: 昂先放链接qwq 感觉还挺妙的,,,真的我觉得我直接做可能是想不到背包的,,,我大概想不出是个背包的QAQ 但是知道是背包之后觉得,哦,好像长得也确实挺背包的吼,而且其实是 ...
- BZOJ4247挂饰
Description JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上. JOI君的挂饰有一些与众不同--其中的一些挂饰附有可以挂其他挂件的挂钩 ...
- bzoj千题计划197:bzoj4247: 挂饰
http://www.lydsy.com/JudgeOnline/problem.php?id=4247 先把挂饰按挂钩数量从大到小排序 dp[i][j]前i个挂饰,剩下j个挂钩的最大喜悦值 分挂和不 ...
- BZOJ4247 : 挂饰
首先将挂饰按照挂钩个数从大到小排序,然后DP 设f[i][j]处理完前i个挂饰,还有j个多余挂钩的最大喜悦值,则 f[0][1]=0 f[i][j]=max(f[i-1][max(j-a[i],0)+ ...
随机推荐
- HDU 2546 饭卡(带限制的01背包变形)
思路:有几个解法,如下 1)先拿出5块买最贵的菜,剩下的菜再进行01背包.如何证明正确性?设最贵的菜价e,次贵的菜价s,设减去5后的余额为x,会不会产生这样的情况,假设用5元买了e,余额最多能买到x- ...
- 基于Activiti5.15.1 自定义用户、组(User,Group)实现
基于Activiti5.15.1 自定义用户.组(User,Group)实现 本人刚接触Activiti,最近工作中需要将Activiti中原有的用户,组(ACT_ID_USER,ACT_ID_GRO ...
- UVA 1616 Caravan Robbers 商队抢劫者(二分)
x越大越难满足条件,二分,每次贪心的选区间判断是否合法.此题精度要求很高需要用long double,结果要输出分数,那么就枚举一下分母,然后求出分子,在判断一下和原来的数的误差. #include& ...
- 通用的flash代码
黑体字部分为常修改的部分 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase=&quo ...
- HTML_6 (表单应用)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- kubernetes-深入理解pod对象(七)
Pod中如何管理多个容器 Pod中可以同时运行多个进程(作为容器运行)协同工作.同一个Pod中的容器会自动的分配到同一个 node 上.同一个Pod中的容器共享资源.网络环境和依赖,它们总是被同时调度 ...
- 如何远程连接Windows server上的MySQL服务
废话不多说,直接开干 首先要打开服务器的MySQL端口号:3306(当然,也可以把服务器的防火墙直接关闭,不过不安全) 1.打开服务器管理器,有个高级安全Windows防火墙,下面有一个入站规则, 右 ...
- 面向对象OONo.3单元总结
一,JML语言 1)JML理论基础:JML是一类语言,用来描述一个方法或一个类的功能.以及这个类在实现这个功能时需要的条件.可能改变的全局变量.以及由于条件问题不能实现功能时这个方法或类的行为,具有明 ...
- 【转】C++后台开发应该读的书
转载自http://www.cnblogs.com/balloonwj/articles/9094905.html 作者 左雪菲 根据我的经验来谈一谈,先介绍一下我的情况,坐标上海,后台开发(也带团队 ...
- CentOS 编译安装PHP5.6(7以上也通用)
由于公司有新服务器需要构建一套LNMP平台,且需要编译安装各个部件,所以记录下此文章. 这是安装PHP涉及到的软件包(可以自行决定使用哪个版本): ├── libiconv-1.15.tar.gz ├ ...