Description

农夫John发现他的奶牛产奶的质量一直在变动。经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠。我们称之为一个“模式”。 John的牛奶按质量可以被赋予一个0到1000000之间的数。并且John记录了N(1<=N<=20000)天的牛奶质量值。他想知道最长的出现了至少K(2<=K<=N)次的模式的长度。比如1 2 3 2 3 2 3 1 中 2 3 2 3出现了两次。当K=2时,这个长度为4。

Input

* Line 1: 两个整数 N,K。

* Lines 2..N+1: 每行一个整数表示当天的质量值。

Output

* Line 1: 一个整数:N天中最长的出现了至少K次的模式的长度

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

题解

  求出相邻lcp后,二分长度,判断相邻的是不是连续超过k个即可。

  为什么这样是对的。

  因为两串相同的最长超过k的长度,那么绝对是相邻lcp超过k次对吧,脑补。

 #include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 20007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,k;
int s[N],sa[N],rk[N*],A[N];
int a[N],b[N],cnta[N],cntb[N],tsa[N],height[N]; void Get_SA()
{
for (int i=;i<=n;i++)cnta[i]=;
for (int i=;i<=n;i++)cnta[s[i]]++;
for (int i=;i<=n;i++)cnta[i]+=cnta[i-];
for (int i=n;i>=;i--)sa[cnta[s[i]]--]=i;
rk[sa[]]=;
for (int i=;i<=n;i++)rk[sa[i]]=rk[sa[i-]]+(s[sa[i]]!=s[sa[i-]]);
for (int i=;rk[sa[n]]!=n;i<<=)
{
for (int j=;j<=n;j++)a[j]=rk[j],b[j]=rk[j+i];
for (int j=;j<=n;j++)cnta[j]=cntb[j]=;
for (int j=;j<=n;j++)cnta[a[j]]++,cntb[b[j]]++;
for (int j=;j<=n;j++)cnta[j]+=cnta[j-],cntb[j]+=cntb[j-];
for (int j=n;j>=;j--)tsa[cntb[b[j]]--]=j;
for (int j=n;j>=;j--)sa[cnta[a[tsa[j]]]--]=tsa[j];
rk[sa[]]=;
for (int j=;j<=n;j++)
rk[sa[j]]=rk[sa[j-]]+(a[sa[j]]!=a[sa[j-]]||b[sa[j]]!=b[sa[j-]]);
}
}
void Get_Height()
{
int len=;
for (int i=;i<=n;i++)
{
if (len) len--;
while(s[i+len]==s[sa[rk[i]-]+len])len++;
height[rk[i]]=len;
}
}
bool check(int x)
{
int tot=;
for (int i=;i<=n;i++)
{
if (height[i]>=x)tot++;else tot=;
if (tot>=k-)return ;
}
return ;
}
int mid_find(int l,int r)
{
while(l<r)
{
int mid=(l+r+)>>;
if (check(mid))l=mid;
else r=mid-;
}
return l;
}
int main()
{
n=read(),k=read();
for (int i=;i<=n;i++) A[i]=s[i]=read();
sort(A+,A+n+);
int cnt=n;cnt=unique(A+,A+cnt+)-A-;
for (int i=;i<=n;i++)
s[i]=lower_bound(A+,A+cnt+,s[i])-A;
Get_SA();
Get_Height();
/*for (int i=1;i<=n;i++)cout<<height[i]<<" ";
cout<<endl;*/
printf("%d\n",mid_find(,n));
}

【bzoj1717】[Usaco2006 Dec]Milk Patterns 产奶的模式 SA+二分的更多相关文章

  1. bzoj1717: [Usaco2006 Dec]Milk Patterns 产奶的模式

    后缀数组+二分答案+离散化.(上次写的时候看数据小没离散化然后一直WA...写了lsj师兄的写法. #include<cstdio> #include<cstring> #in ...

  2. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组_二分答案

    Milk Patterns 产奶的模式 bzoj-1717 Usaco-2006 Dec 题目大意:给定一个字符串,求最长的至少出现了$k$次的子串长度. 注释:$1\le n\le 2\cdot 1 ...

  3. bzoj1717: [Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+二分)

    /* 求可重叠的至少重复K次的最长字串 以1为下标起点,因为a[i]最大到1000000,所以要先离散一下 二分长度len 然后O(n)检验 后看h[i]是否有连续的一段h[i]大于len的,并且h[ ...

  4. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式 (hash构造后缀数组,二分答案)

    以后似乎终于不用去学后缀数组的倍增搞法||DC3等blablaSXBK的方法了= = 定义(来自关于后缀数组的那篇国家集训队论文..) 后缀数组:后缀数组SA是一个一维数组,它保存1..n的某个排列S ...

  5. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式——后缀数组

    Brief Description 给定一个字符串,求至少出现k次的最长重复子串. Algorithm Design 先二分答案,然后将后缀分成若干组.判断有没有一个组的后缀个数不小于k.如果有,那么 ...

  6. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 [后缀数组]

    1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: ...

  7. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式( 二分答案 + 后缀数组 )

    二分答案m, 后缀数组求出height数组后分组来判断. ------------------------------------------------------------ #include&l ...

  8. BZOJ#1717:[Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+单调队列)

    1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的 ...

  9. BZOJ_1717_[Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组

    BZOJ_1717_[Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组 Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他 ...

随机推荐

  1. Problem X: C语言习题 学生成绩输入和输出

    Problem X: C语言习题 学生成绩输入和输出 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 4722  Solved: 2284[Submit] ...

  2. 毛毛虫组【Beta】Scrum Meeting 1

    第一天 日期:2019/6/23 前言 第一次会议: 时间:6月20日 地点:教9-C404机房 内容:此次会议主要确定组内成员具体分工,并对目标进行了初步的确定. 1.1 今日完成任务情况以及遇到的 ...

  3. python学习笔记-环境安装【1】

    1.在 WINDOWS 下面要运行命令 pip install virtualenvwrapper-win才行 参考地址http://blog.csdn.net/liuhongyue/article/ ...

  4. AddDbContext was called with configuration, but the context type 'NewsContext' only declares a parameterless constructor?

    问题 An error occurred while starting the application. ArgumentException: AddDbContext was called with ...

  5. Element表单验证(2)

    Element表单验证(2) 上篇讲的是async-validator的基本要素,那么,如何使用到Element中以及怎样优雅地使用,就在本篇. 上篇讲到async-validator由3大部分组成 ...

  6. React和Vue组件间数据传递demo

    一.React (一)父组件向子组件传数据 简单的向下传递参数 /* Parent */ class App extends Component { render() { return ( <d ...

  7. OpenCV中图像的BGR格式及Img对象的属性说明

    1. 图像的BGR格式说明 OpenCV中图像读入的数据格式是numpy的ndarray数据格式.是BGR格式,取值范围是[0,255]. 如下图所示,分为三个维度: 第一维度:Height 高度,对 ...

  8. Python头脑风暴2

    今天想到了一个致富新途径:假如我在X东上班,我写个X宝爬虫,专门爬在X宝买奢侈品的土豪,然后我自己注册个X宝号,用脚本一个个加他们然后给他们发信息说我X东这还有比你更便宜更好的...不知道行不行啊(狗 ...

  9. Tourists Gym - 101002I LCA——dfs+RMQ在线算法

    LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先). 知识需求:1)RMQ的S ...

  10. Kubernetes(k8s)底层网络原理刨析

    目录 1 典型的数据传输流程图 2 3种ip说明 3 Docker0网桥和flannel网络方案 4 Service和DNS 4.1 service 4.2 DNS 5 外部访问集群 5.1 外部访问 ...