【BZOJ2339】[HNOI2011]卡农 组合数+容斥
【BZOJ2339】[HNOI2011]卡农

题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可。
考虑DP。如果我们已经知道了前m-1个集合,那么第m个集合已经是确定的了。因为内层集合的n个元素可以随便出现,那么总数就是A(2^n-1,m-1)。但是可能存在不合法的情况。
1.在前m-1个集合中,n个数出现的次数已经都是偶数了,那么第m个集合为空,不合法,此时方案数为f[m-1]。
2.第m个集合与之前某个集合相同,那么我们不考虑这两个集合,剩下的方案数为f[i-2];该集合可能是第1...m-1个;该集合可能有2^n-1-(m-2)中情况。所以方案数为f[i-2]*(m-1)*(2^n-1-(m-2))
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll mod=100000007;
ll n,m,n2,c,m1;
ll ine[1000010],f[1000010];
int main()
{
scanf("%lld%lld",&n,&m);
ll i;
ine[1]=1;
for(i=2;i<=m;i++) ine[i]=(mod-(mod/i)*ine[mod%i]%mod)%mod;
for(n2=i=1;i<=n;i++) n2=(n2<<1)%mod;
n2=(n2-1+mod)%mod,c=1,f[0]=1,f[1]=0,m1=1;
for(i=2;i<=m;i++)
{
c=c*(n2-i+2)%mod,m1=m1*ine[i]%mod;
f[i]=((c-f[i-1]-f[i-2]*(n2-i+2)%mod*(i-1))%mod+mod)%mod;
}
printf("%lld",f[m]*m1%mod);
return 0;
}
【BZOJ2339】[HNOI2011]卡农 组合数+容斥的更多相关文章
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- BZOJ2339 HNOI2011卡农(动态规划+组合数学)
考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...
- 【BZOJ2339】卡农(递推,容斥)
[BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- 【bzoj2339】[HNOI2011]卡农 dp+容斥原理
题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
随机推荐
- bzoj 1038 瞭望塔 半平面交+分段函数
题目大意 给你一座山,山的形状在二维平面上为折线 给出\((x_1,y_1),(x_2,y_2)...(x_n,y_n)\)表示山的边界点或转折点 现在要在\([x_1,x_n]\)(闭区间)中选择一 ...
- bzoj 3456 城市规划 无向简单连通图个数 多项式求逆
题目大意 求n个点的无向简单连通图个数 做法1 \(f[i]\)表示i个点的无向简单连通图个数 \(g[i]=2^{\frac {i*(i-1)}{2}}\)表示i个点的无向简单图个数(不要求连通) ...
- <编程精粹:编写高质量C语言代码> 读书笔记
0.规则<The Elements of Programming Style><The Elements of Style> 1.假想的编译程序(1)使用编译器提供的所有的可选 ...
- linux-3.2.36内核启动2-setup_arch中的内存初始化1(arm平台 分析高端内存和初始化memblock)【转】
转自:http://blog.csdn.net/tommy_wxie/article/details/17093307 上一篇微博留下了这几个函数,现在我们来分析它们 sanity_c ...
- LeetCode OJ--Path Sum *
https://oj.leetcode.com/problems/path-sum/ 树的深搜,求从根到叶子的路径. 记住深搜的样子 #include <iostream> using n ...
- iOS-tableView上拉加载更多后,界面出现偏移
问题描述: 在做tableview的界面展示的时候,cell用自动计算高度的.但是在上拉加载更多的时候,数据请求完后,刷新界面,界面的顶部就出现了偏移 分析: 查阅资料后发现,当tableView的c ...
- Nginx+keepalived双机热备(主从模式)
简单介绍: Keepalived是Linux下面实现VRRP备份路由的高可靠性运行软件,能够真正做到 主服务器和备份服务器故障时IP瞬间无缝交接; Keepalived的目的是模拟路由器的高可用; H ...
- UVA - 10615 Rooks
建一下模,把行和列看成二分图的点,把车看成是二分图中的边,这样就变成了上一个博客的问题. 我们每次新加一条边,就把它加入一条 这条边两端点最小没有出现的颜色 交替出现的路径中去. #include& ...
- Java判断语句中判断条件的执行顺序
if判断里面如果是多个条件的判断,会按照从前往后的顺序执行.基本所有语言都是一致的设计,这样做能提高程序的效率. 比如: if ( conditionA && conditionB ) ...
- Maven转换成Eclipse/Idea/MyEclipse工程,以及配置Web工程
Eclipse/MyEclipse: //Jar mvn eclipse:eclipse mvn eclipse:myeclipse //Web mvn eclipse:eclipse -Dwtpve ...