Codeforces Round #506 (Div. 3) C. Maximal Intersection
3 seconds
256 megabytes
standard input
standard output
You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.
For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).
Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1)segments has the maximal possible length.
The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.
Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.
Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.
4
1 3
2 6
0 4
3 3
1
5
2 6
1 3
0 4
1 20
0 4
2
3
4 5
1 2
9 20
0
2
3 10
1 5
7
In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).
In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3](length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).
In the third example the intersection will become an empty set no matter the segment you remove.
In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].
题意:给出n个区间,然后你可以删除一个区间,问你剩下的区间的交集的最大长度是多少
思路:我们回到原始的求所有区间的交集,其实就是 距离左边最近的右边界-距离右边最近的左边界
所以这个问题我们可以排个序,然后我们枚举要删除的边界,但是我们范围是10^5 n^2算法肯定不行,但我们又需要遍历,如果是nlogn的话肯定可以
这个时候我们可以考虑set,内有自动排序的功能,也是由红黑树组成优化了时间复杂度,但是说可能会记录重复的,那我们就要使用 multiset,和set的区别就在于能记录重复
然后我们枚举每个删除的区间即可
#include <bits/stdc++.h>
using namespace std;
int l[], r[];
multiset<int> a, b;
int main(){
int n;
scanf("%d", &n);
for(int i=;i<=n;i++){
scanf("%d%d", &l[i], &r[i]);
a.insert(l[i]);
b.insert(r[i]);
}
int ans = ;
for(int i=;i<=n;i++){
a.erase(a.find(l[i]));
b.erase(b.find(r[i]));
ans = max(ans, *b.begin()-*a.rbegin());//取最大
a.insert(l[i]);
b.insert(r[i]);
}
printf("%d\n", ans);
}
还有种 优先队列的写法更加快
#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main() {
int n,l[],r[];
priority_queue<int> ml, mr;
scanf("%d", &n);
for (int i=;i<n;++i) {
scanf("%d %d", l+i, r+i);
ml.push(l[i]);
mr.push(-r[i]);
}
int ans = ;
bool bl, br;
for (int i=;i<n;++i) {
bl = br = ;
if (ml.top()==l[i]) {
bl = ;
ml.pop();
}
if (mr.top()==-r[i]) {
br = ;
mr.pop();
}
ans = max(ans, -mr.top()-ml.top());
if (bl) ml.push(l[i]);
if (br) mr.push(-r[i]);
}
printf("%d\n", ans);
return ;
}
Codeforces Round #506 (Div. 3) C. Maximal Intersection的更多相关文章
- Codeforces Round #506 (Div. 3) 题解
Codeforces Round #506 (Div. 3) 题目总链接:https://codeforces.com/contest/1029 A. Many Equal Substrings 题意 ...
- Codeforces Round #506 (Div. 3) D-F
Codeforces Round #506 (Div. 3) (中等难度) 自己的做题速度大概只尝试了D题,不过TLE D. Concatenated Multiples 题意 数组a[],长度n,给 ...
- Codeforces Round #506 (Div. 3) E
Codeforces Round #506 (Div. 3) E dfs+贪心 #include<bits/stdc++.h> using namespace std; typedef l ...
- Codeforces Round #506 (Div. 3) A-C
CF比赛题解(简单题) 简单题是指自己在比赛期间做出来了 A. Many Equal Substrings 题意 给个字符串t,构造一个字符串s,使得s中t出现k次;s的长度最短 如t="c ...
- Codeforces Round #198 (Div. 2) B. Maximal Area Quadrilateral
B. Maximal Area Quadrilateral time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces Round #547 (Div. 3) B.Maximal Continuous Rest
链接:https://codeforces.com/contest/1141/problem/B 题意: 给n个数,0代表工作,1代表休息,求能连续最大的休息长度. 可以连接首尾. 思路: 求普通连续 ...
- Codeforces Round #506 (Div. 3)
题解: div3水的没有什么意思 abc就不说了 d题比较显然的就是用hash 但是不能直接搞 所以我们要枚举他后面那个数的位数 然后用map判断就可以了 刚开始没搞清楚数据范围写了快速乘竟然被hac ...
- Codeforces Round #506 (Div. 3) D. Concatenated Multiples
D. Concatenated Multiples You are given an array aa, consisting of nn positive integers. Let's call ...
- Codeforces Round #506 (Div. 3) - D. Concatenated Multiples(思维拼接求是否为k的倍数)
题意 给你N个数字和一个K,问一共有几种拼接数字的方式使得到的数字是K的倍数,拼接:“234”和“123”拼接得到“234123” 分析: N <= 2e5,简单的暴力O(N^2)枚举肯定超时 ...
随机推荐
- Scrapy - CrawlSpider爬虫
crawlSpider 爬虫 思路: 从response中提取满足某个条件的url地址,发送给引擎,同时能够指定callback函数. 1. 创建项目 scrapy startproject mysp ...
- 1.numpy_overview
官网文档:https://www.numpy.org.cn/ Numpy 简介 导入numpy Numpy是Python的一个很重要的第三方库,很多其他科学计算的第三方库都是以Numpy为基础建立的. ...
- MyBatis中mybatis-generator代码生成的一般过程
MyBatis框架的使用,可以参考我的文章: https://blog.csdn.net/JayInnn/article/details/81746571(基于Mybatis实现一个查库的接口) ht ...
- 『CUDA C编程权威指南』第二章编程题选做
第一题 设置线程块中线程数为1024效果优于设置为1023,且提升明显,不过原因未知,以后章节看看能不能回答. 第二题 参考文件sumArraysOnGPUtimer.cu,设置block=256,新 ...
- Convert PIL Image to byte array?
1.import io img = Image.open(fh, mode='r') roiImg = img.crop(box) imgByteArr = io.BytesIO() roiImg.s ...
- MSMQ 概述
MSMQ 概述 1) MSMQ概述 MSMQ 表示微软消息队列服务.MSMQ 可以工作在在线或者离线场景,并提供异步编程功能.如果客户端离线,MSMQ将会是最合适的方法,这是因为服务端不需要等待客户端 ...
- Oracle11g温习-第十九章:审计(audit)
2013年4月27日 星期六 10:52 1.审计的功能:监控用户在database 的 action (操作) 2.审计分类 1) session :在同一个session,相同的语句只产生一个审计 ...
- Alibaba Java Coding Guidelines
阿里巴巴于10月14日在杭州云栖大会上,正式发布众所期待的<阿里巴巴Java开发规约>扫描插件!该插件由阿里巴巴P3C项目组研发.P3C是世界知名的反潜机,专门对付水下潜水艇,寓意是扫描出 ...
- 十六、JAVA基础(堆和栈)
一.堆和栈 堆和栈都是JAVA中的存储结构,也就是说,都是内存中存放数据的地方. 1.堆:(存放由new创建的对象和数组) 引用类型的变量,内存分配一般在堆上或者常量池(字符串常量,基本数据类型常量) ...
- Linux变量及运算
变量赋值:var=var_value 变量引用:$var 算术运算:var=`expr $var1 + $var2` 字符串连接:var=str$var1 数值比较:-eq/-ne/-gt/-lt/- ...