LeetCode(60): 第k个排列
Medium!
题目描述:
给出集合 [1,2,3,…,n]
,其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
- 给定 n 的范围是 [1, 9]。
- 给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: "213"
示例 2:
输入: n = 4, k = 9
输出: "2314"
解题思路:
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,我们可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见https://bangbingsyb.blogspot.com/2014/11/leetcode-permutation-sequence.html
首先我们要知道当n = 3时,其排列组合共有3! = 6种,当n = 4时,其排列组合共有4! = 24种,我们就以n = 4, k = 17的情况来分析,所有排列组合情况如下:
34
43
24
42
23
32
34
43
14
41
13
431
24
42
14
41
12 <--- k = 17
21
23
32
13
31
12
21
我们可以发现,每一位上1,2,3,4分别都出现了6次,当第一位上的数字确定了,后面三位上每个数字都出现了2次,当第二位也确定了,后面的数字都只出现了1次,当第三位确定了,那么第四位上的数字也只能出现一次,那么下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16:
最高位可取1,2,3,4中的一个,每个数字出现3!= 6次,所以k = 16的第一位数字的下标为16 / 6 = 2,即3被取出
第二位此时从1,2,4中取一个,k = 16时,k' = 16 % (3!) = 4,而剩下的每个数字出现2!= 2次,所以第二数字的下标为4 / 2 = 2,即4被取出
第三位此时从1,2中去一个,k' = 4时,k'' = 4 % (2!) = 0,而剩下的每个数字出现1!= 1次,所以第三个数字的下标为 0 / 1 = 0,即1被取出
第四位是从2中取一个,k'' = 0时,k''' = 0 % (1!) = 0,而剩下的每个数字出现0!= 1次,所以第四个数字的下标为0 / 1= 0,即2被取出
那么我们就可以找出规律了
a1 = k / (n - 1)!
k1 = k
a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...
an-1 = kn-2 / 1!
kn-1 = kn-2 / 1!
an = kn-1 / 0!
kn = kn-1 % 0!
代码如下:
C++解法一:
class Solution {
public:
string getPermutation(int n, int k) {
string res;
string num = "123456789";
vector<int> f(n, 1);
for (int i = 1; i < n; ++i) f[i] = f[i - 1] * i;
--k;
for (int i = n; i >= 1; --i) {
int j = k / f[i - 1];
k %= f[i - 1];
res.push_back(num[j]);
num.erase(j, 1);
}
return res;
}
};
LeetCode(60): 第k个排列的更多相关文章
- Java实现 LeetCode 60 第k个排列
60. 第k个排列 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &q ...
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode 60. 第k个排列(Permutation Sequence)
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "1 ...
- LeetCode:第K个排列【60】
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
- [LeetCode]60. Permutation Sequence求全排列第k个
/* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int ...
- 60第K个排列
题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &quo ...
- 力扣60——第k个排列
原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...
- leetCode 60.Permutation Sequence (排列序列) 解题思路和方法
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- 算法:60.第k个排列
解答参考:https://blog.csdn.net/lqcsp/article/details/23322951 题目链接:https://leetcode-cn.com/problems/perm ...
随机推荐
- Http请求中Content-Type讲解以及在Spring MVC中的应用【转】
完全引用自: http://blog.csdn.net/blueheart20/article/details/45174399#t1 此文讲得很清晰,赞! 引言: 在Http请求中,我们每天都在 ...
- jquery blockui 遮罩【转】
参考 : http://bookshadow.com/weblog/2014/09/26/jquery-blockui-js-introduction/ blockUI.html blockUI.ht ...
- UVALive 4725 Airport(二分)
题目链接 题意 机场有两种飞机,每小时一些飞机到达,每小时安排一架飞机起航.求任意时刻中两种飞机数目的最大值的最小值. 分析 首先肯定是二分来做.这里的难点在于如何判断飞机数目是否合法.一开始忽略了某 ...
- Neural Networks and Deep Learning(week2)Logistic Regression with a Neural Network mindset(实现一个图像识别算法)
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture ...
- Python基础(协程函数、内置函数、递归、模块和包)-day05
写在前面 上课第五天,打卡: 凭着爱,再回首: 一.协程函数(生成器:yield的表达式形式) 1.yield 的语句形式: yield 1 - 这种方式在 Python基础(函数部分)-day04 ...
- Storm WordCount Topology学习
1,分布式单词计数的流程 首先要有数据源,在SentenceSpout中定义了一个字符串数组sentences来模拟数据源.字符串数组中的每句话作为一个tuple发射.其实,SplitBolt接收Se ...
- VS2013中修改MFC对话框左上角和exe图标
一.开发环境 1.VS2013: 2.C++ / MFC: 二.更改步骤 1)创建一个新工程,可以什么都不加.打开“资源视图”, 右键点击项目名称,选择“添加资源”,导入“Icon”资源文件(事先准备 ...
- python技巧 计算字符串中字母出现的次数并取出最大
有一个字符串 “aaddfdfdercfghfyttefsfsfewretr123trefg5624sdfcgvfdgte6435234532”,现在需要取出里面出现次数最多的字符 第一种方法-装饰器 ...
- mysql 架构 ~ binlog_server
一 简介 mysql binlog server 二 目的 实时备份线上的binlog 利用备份+binlog进行任何时间点的恢复 三 详细信息 1 基本命令 /usr/local/mysql ...
- python - 用类写装饰器
这里用到了__call__的class内置参数 #类装饰器: class zsq(): #本质是定义一个参数,让装饰的主题传递至__call__方法内部 def __init__(self,obj): ...