题目链接

贪心,每次选价值最大的一条到根的链。比较显然(不选白不选)。

考虑如何维护这个过程。一个点的价值选了就没有了,而它只会影响它子树里的点,可以用DFS序+线段树修改。而求最大值也可以用线段树。

每个点只会被取一次,即价值也只会被清空一次。所以每选一条链就暴力往上跳,直到到一个清空过的点,顺便在线段树上修改经过点的子树权值就可以了。

复杂度\(O((n+k)\log n)\)。

实际上,每个点只被统计一次,就是选\(k\)条最长的不相交的链(链形态是从上到下的)。

所以可以想到长链剖分。以路径权值和作为深度,选最长的\(k\)条长链就行了。

nth_element就可以把排序的复杂度也省了233.

所以复杂度\(O(n)\)。

//10236kb	364ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=2e5+5; int Enum,H[N],nxt[N],to[N],A[N],son[N],cnt;
LL mxd[N],val[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int v,int u)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
void DFS1(int x)
{
LL mx=0;
for(int i=H[x],v; i; i=nxt[i])
DFS1(v=to[i]), mxd[v]>mx&&(mx=mxd[v],son[x]=v);
mxd[x]=mx+A[x];
}
void DFS2(int x,int top)
{
if(x==top) val[++cnt]=mxd[x];
if(!son[x]) return;
DFS2(son[x],top);
for(int i=H[x]; i; i=nxt[i])
if(to[i]!=son[x]) DFS2(to[i],to[i]);
} int main()
{
int n=read(),K=read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1), DFS2(1,1);
K=std::min(K,cnt), std::nth_element(val+1,val+cnt-K+1,val+1+cnt);
LL ans=0;
for(int i=cnt-K+1; i<=cnt; ++i) ans+=val[i];
printf("%lld\n",ans); return 0;
}

BZOJ.3252.攻略(贪心 长链剖分/线段树)的更多相关文章

  1. BZOJ[3252]攻略(长链剖分)

    BZOJ[3252]攻略 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏<XX半岛> ...

  2. 【BZOJ3252】攻略(长链剖分,贪心)

    [BZOJ3252]攻略(长链剖分,贪心) 题面 BZOJ 给定一棵树,每个点有点权,选定\(k\)个叶子,满足根到\(k\)个叶子的所有路径所覆盖的点权和最大. 题解 一个假装是对的贪心: 每次选择 ...

  3. BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)

    题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...

  4. 219.01.19 bzoj3252: 攻略(长链剖分+贪心)

    传送门 长链剖分好题. 题意:给一棵带点权的树,可以从根节点到任一叶节点走kkk次,走过的点只能计算一次,问kkk次走过的点点权值和最大值. 思路: 考虑将整棵树带权长链剖分,这样链与链之间是不会重复 ...

  5. BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)

    BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...

  6. [WC2010]重建计划(长链剖分+线段树+分数规划)

    看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径.设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复 ...

  7. 2018牛客网暑假ACM多校训练赛(第七场)I Tree Subset Diameter 动态规划 长链剖分 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round7-I.html 题目传送门 -  https://www.n ...

  8. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  9. 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)

    传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...

随机推荐

  1. Windows下Anaconda的安装和简单使用

    Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...

  2. oracle分区分表

    (1) 表空间及分区表的概念表空间: 是一个或多个数据文件的集合,所有的数据对象都存放在指定的表空间中,但主要存放的是表, 所以称作表空间.分区表:        当表中的数据量不断增大,查询数据的速 ...

  3. hostapd 和 wap_supplicant

    hostapd : user space daemon for access points, including, e.g., IEEE 802.1X/WPA/EAP Authenticator fo ...

  4. 关于XMLHttpRequest状态的讨论及处理方法

    今天主要是讨论下XMLHttpRequest的响应状态问题.我们知道,XMLHttpRequest的响应阶段有5个,分别是: 请求未初始化 服务器连接已建立 请求已接收 请求处理中 请求已完成,且响应 ...

  5. uva12436 回头再做一次

    线段树维护等差数列,结点维护首项+公差即可 #include <cstdio> #include <cstring> #include <algorithm> us ...

  6. python 全栈开发,Day14(列表推导式,生成器表达式,内置函数)

    一.列表生成式 生成1-100的列表 li = [] for i in range(1,101): li.append(i) print(li) 执行输出: [1,2,3...] 生成python1期 ...

  7. spring-boot集成spring-data-jpa

    参考这个就行, http://blog.csdn.net/wazz753/article/details/72472411 ps:集成过程中pom文件,我加入的内容如下,两个都需要,实体类记得加注解和 ...

  8. oracle中计算某月的天数

    select add_months(to_date('201202', 'YYYYMM'),1)-to_date('201202', 'YYYYMM') from dual

  9. javafx基于使用fxml布局的tableview数据绑定用法

    来个简单明了的 fxml的tableview数据绑定和java代码方式的数据绑定很像,不同的在于要有一到映射 首先看个目录 1.界面文件Sample.fxml <?xml version=&qu ...

  10. HDU 1851 (N个BASH博弈子游戏)

    题意:n堆石子,分别有M1,M2,·······,Mn个石子,各堆分别最多取L1,L2,·····Ln个石头,两个人分别取,一次只能从一堆中取,取走最后一个石子的人获胜.后选的人获胜输出Yes,否则输 ...