[洛谷U40581]树上统计treecnt
[洛谷U40581]树上统计treecnt
题目大意:
给定一棵\(n(n\le10^5)\)个点的树。
定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边的数量。
求\(\sum_{l=1}^n\sum_{r=l}^nTree[l,r]\)。
思路:
对于每个边考虑贡献,若我们将出现在子树内的点记作\(1\),出现在子树外的点记作\(0\),那么答案就是\(\frac{n(n-1)}2-\)全\(0\)、全\(1\)串的个数。线段树合并,维护前缀/后缀最长全\(0\)/全\(1\)串即可。
时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5+1,logN=18;
int n;
int64 ans;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
inline int64 calc(const int &n) {
return 1ll*n*(n-1)/2;
}
struct Node {
int pre[2],suf[2],len;
int64 sum;
Node() {}
Node(const int &l,const bool &v) {
pre[!v]=suf[!v]=0;
pre[v]=suf[v]=len=l;
sum=calc(l);
}
friend Node operator + (const Node &l,const Node &r) {
Node ret;
ret.pre[0]=l.pre[0]+r.pre[0]*(l.pre[0]==l.len);
ret.pre[1]=l.pre[1]+r.pre[1]*(l.pre[1]==l.len);
ret.suf[0]=r.suf[0]+l.suf[0]*(r.suf[0]==r.len);
ret.suf[1]=r.suf[1]+l.suf[1]*(r.suf[1]==r.len);
ret.len=l.len+r.len;
ret.sum=l.sum+r.sum+1ll*l.suf[0]*r.pre[0]+1ll*l.suf[1]*r.pre[1];
return ret;
}
};
class SegmentTree {
#define mid ((b+e)>>1)
private:
Node node[N*logN];
int left[N*logN],right[N*logN];
int sz,new_node() {
return ++sz;
}
int len(const int &b,const int &e) {
return e-b+1;
}
void push_up(const int &p,const int &b,const int &e) {
if(!left[p]) node[p]=Node(len(b,mid),0)+node[right[p]];
if(!right[p]) node[p]=node[left[p]]+Node(len(mid+1,e),0);
if(left[p]&&right[p]) {
node[p]=node[left[p]]+node[right[p]];
}
}
public:
int root[N];
void insert(int &p,const int &b,const int &e,const int &x) {
if(!p) p=new_node();
if(b==e) {
node[p]=Node(1,1);
return;
}
if(x<=mid) insert(left[p],b,mid,x);
if(x>mid) insert(right[p],mid+1,e,x);
push_up(p,b,e);
}
void merge(int &p,const int &q,const int &b,const int &e) {
if(!p||!q) {
p=p|q;
return;
}
if(b==e) return;
merge(left[p],left[q],b,mid);
merge(right[p],right[q],mid+1,e);
push_up(p,b,e);
}
int64 query(const int &p) const {
return node[p].sum;
}
#undef mid
};
SegmentTree t;
void dfs(const int &x,const int &par) {
t.insert(t.root[x],1,n,x);
for(auto &y:e[x]) {
if(y==par) continue;
dfs(y,x);
t.merge(t.root[x],t.root[y],1,n);
}
if(x!=1) ans-=t.query(t.root[x]);
}
int main() {
n=getint();
ans=calc(n)*(n-1);
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
printf("%lld\n",ans);
return 0;
}
[洛谷U40581]树上统计treecnt的更多相关文章
- 洛谷 P2664 树上游戏 解题报告
P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷P2664 树上游戏(点分治)
题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...
- 洛谷P4242 树上的毒瘤
解:首先有个套路是一条边的权值是[两端点颜色不同].这个用树剖直接维护,支持修改. 每次询问建虚树,查询虚树上每条边的权值.然后树形DP,用开店的方法,每个点链加链查. #include <bi ...
- 树上统计treecnt(dsu on tree 并查集 正难则反)
题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...
- 洛谷P2664 树上游戏(点分治)
传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...
- 【刷题】洛谷 P2664 树上游戏
题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 \[sum_i=\sum_{j=1}^ns(i,j)\] 现在他想让你求出所有 ...
- 洛谷——P1608 路径统计
P1608 路径统计 题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方, ...
- 洛谷 P1608 路径统计
P1608 路径统计 题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方, ...
随机推荐
- 如何读取Linux键值,输入子系统,key,dev/input/event,dev/event,C语言键盘【转】
转自:https://blog.csdn.net/lanmanck/article/details/8423669 相信各位使用嵌入式的都希望直接读取键值,特别是芯片厂家已经提供input驱动的情况下 ...
- win7安装Ubuntu变双系统以及删除Ubuntu分区操作
Window7系统基础上安装Ubuntu使构成双系统,整个过程如下: 1. 一块空闲磁盘分区准备. “我的电脑”右键 > 管理 > 磁盘管理 > 压缩(从有空余分区压缩)/删除(删除 ...
- 【转】使用SevenZipSharp压缩、解压文件
引用 下载之后引用“SevenZipSharp.dll”至项目中,然后将“7z.dll”放到bin目录下,或者这样引用:SevenZipCompressor.SetLibraryPath(" ...
- 如何消除手机设置的字体大小对Cordova app(Android)界面font-size的影响
===================== 更新分割线 =================== 现在发现其实不需要用安卓编辑器打开,也能找到这个文件,路径是platforms\android\Cord ...
- Ex 6_12 凸多边形的最优三角剖分..._第六次作业
假设顶点的总数为n,从0到n-1. 从序号为0的顶点开始以逆时针方向排序,对于 令子问题A[i,j]为包含顶点i,i+1, . . . j的凸多边形的最小三角剖分代价,dist(i,j)为顶点i到顶点 ...
- PYTHON-有参装饰器,无参装饰器,语法糖
装饰器 装饰器就是闭包函数的一种应用场景 一 为何要用装饰器 #开放封闭原则:对修改封闭,对扩展开放 二 什么是装饰器 装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象. 强 ...
- 服务发现之consul的介绍、部署和使用
什么是服务发现 微服务的框架体系中,服务发现是不能不提的一个模块.我相信了解或者熟悉微服务的童鞋应该都知道它的重要性.这里我只是简单的提一下,毕竟这不是我们的重点.我们看下面的一幅图片: 图中 ...
- asp.net core 通过ajax上传图片及wangEditor图片上传
asp.net core 通过ajax上传图片 .net core前端代码,因为是通过ajax调用,首先要保证ajax能调用后台代码,具体参见上一篇.net core 使用ajax调用后台代码. 前端 ...
- Oracle 服务器结构
[学习目标] 作为一个数据库管理员(DBA),经常会遇到各种没有见过的问题.除了宝贵的经验外, 通过理论基础去对问题进行判断.解决是至关重要的.因此,Oracle 服务器的结构和组成 是学习Oracl ...
- Java集合框架入门介绍(一)
Java工具包(java.util)提供了强大的数据结构,主要有以下几种接口或类 枚举Enumeration 接口 从数据集合中取回一系列连续值的方法 位集合 BitSet 可以单独清楚或设置的位和标 ...