tf.expand_dims 来增加维度
主要是因为tflearn官方的例子总是有embeding层,去掉的话要conv1d正常工作,需要加上expand_dims
network = input_data(shape=[None, 100], name='input')
network = tf.expand_dims(network, 2)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
ref:https://stackoverflow.com/questions/49592771/tflearn-classification-with-cnn-conv-1d
from: https://blog.csdn.net/jasonzzj/article/details/60811035
TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1
在这种情况下,我们就可以考虑使用expand_dims来将维度加1。比如我自己代码中遇到的情况,在对图像维度降到二维做特定操作后,要还原成四维[batch, height, width, channels],前后各增加一维。如果用reshape,则因为上述原因报错
one_img2 = tf.reshape(one_img, shape=[1, one_img.get_shape()[0].value, one_img.get_shape()[1].value, 1])
用下面的方法可以实现:
one_img = tf.expand_dims(one_img, 0)
one_img = tf.expand_dims(one_img, -1) #-1表示最后一维
在最后,给出官方的例子和说明
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
Args:
input: A Tensor.
dim: A Tensor. Must be one of the following types: int32, int64. 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as input. Contains the same data as input, but its shape has an additional dimension of size 1 added.
tf.expand_dims 来增加维度的更多相关文章
- 深度学习原理与框架-递归神经网络-RNN_exmaple(代码) 1.rnn.BasicLSTMCell(构造基本网络) 2.tf.nn.dynamic_rnn(执行rnn网络) 3.tf.expand_dim(增加输入数据的维度) 4.tf.tile(在某个维度上按照倍数进行平铺迭代) 5.tf.squeeze(去除维度上为1的维度)
1. rnn.BasicLSTMCell(num_hidden) # 构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, ...
- tensorflow 笔记14:tf.expand_dims和tf.squeeze函数
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, ...
- tf.expand_dims和tf.squeeze函数
from http://blog.csdn.net/qq_31780525/article/details/72280284 tf.expand_dims() Function tf.expand_d ...
- tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask
1. tf.split(3, group, input) # 拆分函数 3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow ...
- tf.expand_dims
想要增加一维,可以使用tf.expand_dims(input, dim, name=None)函数 t = np.array(np.arange(1, 1 + 30).reshape([2, 3, ...
- pytorch 矩阵数据增加维度unsqueeze和降低维度squeeze
增加一个维度 out.unsqueeze(-1) 降低一个维度 out.squeeze(dim=1)
- 【tensorflow2.0】张量的结构操作
张量的操作主要包括张量的结构操作和张量的数学运算. 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割. 张量数学运算主要有:标量运算,向量运算,矩阵运算.另外我们会介绍张量运算的广播机制. 本 ...
- 吴裕雄--天生自然TensorFlow2教程:维度变换
图片视图 [b, 28, 28] # 保存b张图片,28行,28列(保存数据一般行优先),图片的数据没有被破坏 [b, 28*28] # 保存b张图片,不考虑图片的行和列,只保存图片的数据,不关注图片 ...
- 文本分类实战(二)—— textCNN 模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- 无法获取未定义或 null 引用的属性“contentWindow”
在iframe 中有时候 这样使用contentWindow 会报 无法获取未定义或 null 引用的属性“contentWindow” 这种情况 我是在IE中遇到 其他浏览器一切正常. pa ...
- kotlin - 空安全
空安全设计的操作符号 操作符 作用 ? 可空操作符,声明该值可为空 ?. 安全调用操作符 b?.length 如果b非空,就返回b.length,否则返回 null !! 非空断言运算符, ...
- 《剑指offer》第五十五题(二叉树的深度)
// 面试题55(一):二叉树的深度 // 题目:输入一棵二叉树的根结点,求该树的深度.从根结点到叶结点依次经过的 // 结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. //如果左右 ...
- Android 虹软免费人脸识别 SDK开发
目前我们的应用内使用了 ArcFace 的人脸检测功能,其他的我们并不了解,所以这里就和大家分享一下我们的集成过程和一些使用心得集成ArcFace FD 的集成过程非常简单在 ArcFace FD 的 ...
- pymysql 数据库编程
1.引入模块 import pymysql 2.用于建立与数据库的连接 调用pymysql模块中的connect()方法 conn = pymysql.connect(host='localhost' ...
- highchart柱状堆叠图动态数据请求
$(function () { var options = { chart: { renderTo: 'indoor', type: 'column', }, title: { text: '室内问题 ...
- ionic toggle点击返回true/false支持自定义
<ul class="list"> <li class="item item-toggle"> 手机提醒 <label class ...
- GEO数据下载分析(SRA、SRR、GEM、SRX、SAMN、SRS、SRP、PRJNA全面解析)
很多时候我们需要从GEO(https://www.ncbi.nlm.nih.gov/geo/)下载RNA-seq数据,一个典型的下载页面是https://www.ncbi.nlm.nih.gov/ge ...
- 有序广播和标准广播 --Android开发
一.标准广播和有序广播也很容易理解的. 标准广播: (1)通过sendBroadcast()方法发送 (2)通过异步方式发送,广播接收者的执行顺序是不明确的 有序广播: (1)通过sendOrderB ...
- find_first_zero_bit在使用gcc 4.2.4 编译时,需要保护%eax
1.3.100 find_first_zero_bit在使用gcc 4.2.4 编译时,需要保护%eax find_first_zero_bit 修订后: /* * Find-bit routines ...