题意:求 [(5 + 2*sqrt(6))^(1 + 2^x)]  % M

基于hdu2256可以求(5 + 2*sqrt(6))^ n

但是n特别大,我们可以找矩阵的循环节

两种可能 1.mod-1      2. (mod+1) * (mod-1)    /*(具体ACdreamers的广义裴波那切找循环节)

在知道2256时,自己做了一遍,但是到时想到的是费马小定理(gg)

p.s  广义Fibonacci数和循环节方面还是不明白,找机会看看

#include <iostream>
#include <cstdio>
using namespace std;
int mod;
typedef long long ll;
struct Matri
{
int a[2][2];
};
Matri Mat; Matri Mul(const Matri &A,const Matri &B)
{
Matri c;
for(int i=0; i<2; i++)
{
for(int j=0; j<2; j++)
{
c.a[i][j]=0;
for(int k=0; k<2; k++)
{
c.a[i][j]+= (A.a[i][k]*B.a[k][j])%mod;
c.a[i][j]%=mod;
}
}
}
return c;
} Matri Pow(int n)
{
if(n==1)
return Mat;
else if(n&1)
{
return Mul(Mat,Pow(n-1));
}
else
{
Matri temp=Pow(n>>1);
return Mul(temp,temp);
}
} int PowerMod(ll a, int b, ll c)
{ ll ans = 1;
ll k = a % c;
while(b>0)
{
if(b % 2 == 1)
ans = (ans * k) % c;
b = b/2;
k = (k * k) % c;
}
return ans; }
int main()
{
int T;
scanf("%d",&T);
int cas = 1;
while(T--)
{
int n;
scanf("%d%d",&n,&mod);
Mat.a[0][0] = 5;
Mat.a[0][1] = 12;
Mat.a[1][0]= 2;
Mat.a[1][1] = 5;
Matri tt;
n = (PowerMod(2,n,(mod-1)*(mod+1)) + 1);
tt = Pow(n);
int ans = (tt.a[0][0]*2 - 1)%mod;
printf("Case #%d: %d\n",cas++,ans);
}
return 0;
}

  

hdu 5451(矩阵 +Fibonacci )的更多相关文章

  1. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  2. hdu 5895 广义Fibonacci数列

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  3. Hdu 5451 Best Solver (2015 ACM/ICPC Asia Regional Shenyang Online) 暴力找循环节 + 递推

    题目链接: Hdu  5451  Best Solver 题目描述: 对于,给出x和mod,求y向下取整后取余mod的值为多少? 解题思路: x的取值为[1, 232],看到这个指数,我的心情是异常崩 ...

  4. hdu 4291 矩阵幂 循环节

    http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109  ...

  5. hdu 5451 Best Solver 矩阵循环群+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x    求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = ...

  6. 【HDU 2855】 Fibonacci Check-up (矩阵乘法)

    Fibonacci Check-up Problem Description Every ALPC has his own alpc-number just like alpc12, alpc55, ...

  7. HDU:Gauss Fibonacci(矩阵快速幂+二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...

  8. hdu 1588(Fibonacci矩阵求和)

    题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a, ...

  9. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

随机推荐

  1. scrapy csvfeed spider

    class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...

  2. Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  3. nyoj 聪明的kk

    聪明的kk 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 聪明的"KK"非洲某国展馆的设计灵感源于富有传奇色彩的沙漠中陡然起伏的沙丘,体现出本国 ...

  4. c# gridview 新增行

    string[] newRow = {"long","d","b"}; Gridview.Rows.Insert(Gridview.Rows ...

  5. ArrayList、Vector、LinkedList、HashMap、HashTable的存储性能和特性

    ArrayList和Vector都是使用数组方式存储数据,次数组元素大于实际存储的数据以便添加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数 ...

  6. jquery实现对div的拖拽功能

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 《深入实践Spring Boot》阅读笔记之一:基础应用开发

    上上篇「1718总结与计划」中提到,18年要对部分项目拆分,进行服务化,并对代码进行重构.公司技术委员会也推荐使用spring boot,之前在各个技术网站中也了解过,它可以大大简化spring配置和 ...

  8. 新概念英语(1-17)How do you do ?

    Is there a problem wtih the Customers officer? What are Michael Baker and Jeremy Short's jobs? A:Com ...

  9. vue2.0+koa2+mongodb实现注册登录

    前言 前段时间和公司一个由技术转产品的同事探讨他的职业道路,对我说了一句深以为然的话: "不要把自己禁锢在某一个领域,技术到产品的转变,首先就是思维上的转变.你一直做前端,数据的交互你只知道 ...

  10. python/MySQL(索引、执行计划、BDA、分页)

    ---恢复内容开始--- python/MySQL(索引.执行计划.BDA.分页) MySQL索引: 所谓索引的就是具有(约束和加速查找的一种方式)   创建索引的缺点是对数据进行(修改.更新.删除) ...