●赘述题目

算了,题目没有重复的必要。

注意理解:对答案造成贡献的是每个点,就是了。

举个栗子:

对于如下数据:

2 1

1 2 1

答案是 2;

●题解

方法:建图(难点)+最短路。

先来几个链接:(他们为我解题提供了思路,但有些部分看得我有点mengbi)

http://blog.csdn.net/pure_w/article/details/55060079

http://www.cnblogs.com/clrs97/p/5046933.html

●建图:

1.把原图的双向边拆成两条单向边(权值不变)。并把每条单向边看成一个点(称为新图点);

2.建立源点S,S向1号点的出边(新图点)建单向边,权值为那些出边的权值。

3.建立汇点T,n号点的入边(新图点)向T建单向边,权值为那些入边的权值。

效果如下:

接下来是比较暴力的建边

(4.)枚举每个原图点X,把它的每条入边(新图点)向每条出边(新图点)建边,权值为这两条出入边的较大权值。(这样导致边巨多)

然后是比较优化的建边

4.(似乎叫差分边),枚举每个原图点X,先把它的出边(新图点)从小到大排序,排序后相邻的出边(新图点)间建两条有向边,小的指向大的边权为两者权值之差,大的指向小的边权为0。再枚举它的每个入边(新图点),向该原图点X的与该入边(新图点)权值相同的出边建边(为什么一定存在权值相同的入边和出边呢?因为我们把无向边变成了两个有向边),权值就为该相同权值。

(4.)和4.的建图效果如下:

最后,新图已经建好,用4.建完图后,点和边的数量都可以接受,跑一个dijkstra就好啦!

●代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct node{
int p;long long d;
bool operator <(const node &rtm) const {return d>rtm.d;}
};
struct edge{
int to,co,next;
}e[400005*2],E[2000000];
int headin[100005],headout[100005],head[400010],nextout[400005*2],nextin[400005*2];
int st[200005];
int n,m,dnt=2,ent=1,S,T,cnt,p;
ll dis[400010];
bool vis[400010];
bool cmp(int x,int y) {return e[x].co<e[y].co;}
void add(int u,int v,int c){
e[dnt]=(edge){v,c,0}; nextout[dnt]=headout[u];
e[dnt]=(edge){v,c,0}; nextin[dnt]=headin[v];
headout[u]=headin[v]=dnt++; e[dnt]=(edge){u,c,0}; nextout[dnt]=headout[v];
e[dnt]=(edge){u,c,0}; nextin[dnt]=headin[u];
headout[v]=headin[u]=dnt++;
}
void ADD(int u,int v,int c) {E[ent]=(edge){v,c,head[u]}; head[u]=ent++;}
void make_something(int x){
cnt=0;
for(int i=headout[x];i;i=nextout[i]) st[++cnt]=i;
sort(st+1,st+cnt+1,cmp);
for(int i=1;i<cnt;i++) ADD(st[i],st[i+1],e[st[i+1]].co-e[st[i]].co),ADD(st[i+1],st[i],0);
for(int i=headin[x];i;i=nextin[i]) p=i^1,ADD(i,p,e[i].co);
}
void dijkstra(){
node u; int v;
memset(dis,0x7f,sizeof(dis));
priority_queue <node> q;
q.push((node){S,0}); dis[S]=0;
while(!q.empty()){
u=q.top(); q.pop();
if(vis[u.p]) continue; vis[u.p]=1;
for(int i=head[u.p];i;i=E[i].next){
v=E[i].to;
if(!vis[v]&&dis[v]>dis[u.p]+E[i].co){
dis[v]=dis[u.p]+E[i].co;
q.push((node){v,dis[v]});
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1,a,b,c;i<=m;i++) scanf("%d%d%d",&a,&b,&c),add(a,b,c);
// 建源点和汇点
S=dnt++; T=dnt++;
for(int i=headout[1];i;i=nextout[i]) ADD(S,i,e[i].co);
for(int i=headin[n];i;i=nextin[i]) ADD(i,T,e[i].co);
//枚举每一个原图点
for(int i=1;i<=n;i++) make_something(i);
dijkstra(); printf("%lld",dis[T]);
return 0;
}

●BZOJ 4289 PA2012 Tax的更多相关文章

  1. BZOJ 4289: PA2012 Tax 差分建图 最短路

    https://www.lydsy.com/JudgeOnline/problem.php?id=4289 https://www.cnblogs.com/clrs97/p/5046933.html  ...

  2. bzoj 4289 PA2012 Tax——构图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 可以把一个点上的边按权值排序,然后边权小的向第一个比它大的连差值的边,边权大的向第一个 ...

  3. bzoj 4289: PA2012 Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  4. BZOJ.4289.PA2012 Tax(思路 Dijkstra)

    题目链接 \(Description\) 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价 ...

  5. 【刷题】BZOJ 4289 PA2012 Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  6. BZOJ 4289: PA2012 Tax(最短路)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 240[Submit][Status][Discuss] Descriptio ...

  7. BZOJ 4289: PA2012 Tax Dijkstra + 查分

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  8. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  9. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

随机推荐

  1. 【评分】集美大学软件工程1413班工程项目管理个人作业2——APP案例分析

    [评分]个人作业2--APP案例分析 作业要求 作业地址及完成情况 博文要求 通过分析你选中的产品,结合阅读<构建之法>,写一篇随笔,包含下述三个环节的所有要求. 第一部分 调研, 评测 ...

  2. django restful 1-在线Python编辑器

    客户端(浏览器)----> 前端页面-----> 后端处理数据,并把数据以 json 形式发送到前端 online_app.py from django.conf import setti ...

  3. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  4. Flask 学习 十 博客文章

    提交和显示博客文章 app/models.py 文章模型 class Post(db.Model): __tablename__ = 'posts' id = db.Column(db.Integer ...

  5. JAVA中if多分支和switch的优劣性。

    Switch多分支语句switch语句是多分支选择语句.常用来根据表达式的值选择要执行的语句.例如,在某程序中,要求将输入的或是获取的用0-6代表的星期,转换为用中文表示的星期.该需求通过伪代码描述的 ...

  6. 关于tomcat部署应用的三种方式

    关于tomcat部署应用虽然不是一个经常的操作,因为一旦选择了一种部署方式,我们其他的应用就会不经大脑的使用这种既定模式, 如果不使用这种部署方式,但是对于其他的部署方式不是很清楚的话,很容易抓瞎,所 ...

  7. day-5 python协程与I/O编程深入浅出

    基于python编程语言环境,重新学习了一遍操作系统IO编程基本知识,同时也学习了什么是协程,通过实际编程,了解进程+协程的优势. 一.python协程编程实现 1.  什么是协程(以下内容来自维基百 ...

  8. JAVAEE——BOS物流项目09:业务受理需求分析、创建表、实现自动分单、数据表格编辑功能使用方法和工作单快速录入

    1 学习计划 1.业务受理需求分析 n 业务通知单 n 工单 n 工作单 2.创建业务受理环节的数据表 n 业务通知单 n 工单 n 工作单 3.实现业务受理自动分单 n 在CRM服务端扩展方法根据手 ...

  9. xftp上传文件失败,执行程序发现磁盘满了:No space left on device

    参考链接 No space left on device 解决Linux系统磁盘空间满的办法http://www.cnblogs.com/aspirant/p/3604801.html如何解决linu ...

  10. api-gateway实践(01)服务网关 - 原型功能

    一.服务注册 1.增加组:LsqGrpA 2.增加版本:LsqVerA 3.增加api:LsqApiA 3.1.基本信息 3.2.前端定义 3.3.后端定义 二.服务上线和服务授权 1.服务上线 2. ...