题意:先给你一个n个点,m条边的有向图,问你最多能够增加多少条边,使得这个图不是一个强连通图

解题思路:考虑最多要添加的边数,所以如果能把初始图划分成两个部分,每个部分都是完全图,这两个部分分别用单向边连接,这样一定是最优的,所以,首先先缩点,因为一个强连通子图的所有点一定要在同一个部分中,缩完点后考虑只有入度和出度为0的点成一个部分才能有最优解,跑所有满足情况的点,当某个点的入度或者出度为0的时候,因为边数最多为两个部分的完全子图+两个部分点的乘积(单向边)-m条给出的边

代码:

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
typedef long long ll;
const int maxn=2e5;
struct Edge
{
ll to;
ll next;
}edge[maxn];
ll low[maxn],dfn[maxn],instack[maxn],sccno[maxn],visit[maxn],head[maxn];
ll scc_cnt,n,m,step,index,cnt;
ll x[maxn],y[maxn];
ll indeg[maxn],outdeg[maxn];
vector<ll>scc[maxn];
bool cnp(int x,int y)
{
return y>x;
}
void add(ll u,ll v)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt++;
}
void tarjan(ll u)
{
low[u]=dfn[u]=++step;
instack[++index]=u;
visit[u]=;
for(ll i=head[u];i!=-;i=edge[i].next)
{
if(!dfn[edge[i].to])
{
tarjan(edge[i].to);
low[u]=min(low[u],low[edge[i].to]);/*更新儿子节点;*/
}
else if(visit[edge[i].to])
{
low[u]=min(low[u],dfn[edge[i].to]);/*更新回边;*/
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
do
{
scc[scc_cnt].push_back(instack[index]);
sccno[instack[index]]=scc_cnt;
visit[instack[index]]=;
index--;
}
while(u!=instack[index+]);
}
return;
}
void init()
{
memset(indeg,,sizeof(indeg));
memset(outdeg,,sizeof(outdeg));
memset(head,-,sizeof(head));
cnt=step=index=scc_cnt=;
memset(visit,,sizeof(visit));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
for(int i=;i<=n;i++)
scc[i].clear();
}
int main()
{
ll t;
ll cot=;
scanf("%lld",&t);
while(t--)
{
cot++;
scanf("%lld%lld",&n,&m);init();
for(int i=;i<=m;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
add(x[i],y[i]);
}
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i);
printf("Case %d: ",cot);
if(scc_cnt==)
printf("-1\n");
else
{
for(int i=;i<=m;i++)
{
if(sccno[x[i]]==sccno[y[i]])
continue;
else
{
indeg[sccno[x[i]]]++;outdeg[sccno[y[i]]]++;
}
}
ll tmpans=;ll ans=;
for(int i=;i<=scc_cnt;i++)
{
if(indeg[i]==||outdeg[i]==)
{
tmpans=;
ll tmp=n-scc[i].size();
tmpans+=(tmp)*(tmp-);
tmpans+=(scc[i].size())*(scc[i].size()-);
tmpans+=(scc[i].size())*tmp;tmpans-=m;
ans=max(ans,tmpans);
}
}
printf("%lld\n",ans);
}
}
}

hdu-4635(tarjan缩点)的更多相关文章

  1. F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解

    题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...

  2. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  3. HDU 4635 (完全图 和 有向图缩点)

    题目链接:HDU  4635 题目大意: 给你一个有向图,加有向边,使得这个图是简单有向图.问你最多加多少条有向边. 简单有向图: 1.不存在有向重边. 2.不存在图循环.(注意是不存在 “图” 循环 ...

  4. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  5. 【HDOJ2767】【Tarjan缩点】

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/O ...

  6. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  7. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  8. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  9. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  10. 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率

    2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1638  Solved: 433[Submit][Statu ...

随机推荐

  1. Docker部署Zabbix监控MariaDB主从同步(Percona Monitoring Plugins for Zabbix)

    一.安装Docker并部署Zabbix 建议先配置清华大学的docker-ce yum源,速度有保障:清华大学repo源 1.Zabbix Server节点配置 部署环境: [root@server0 ...

  2. Python两步实现关联规则Apriori算法,参考机器学习实战,包括频繁项集的构建以及关联规则的挖掘

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  3. 基于Socket通讯(C#)和WebSocket协议(net)编写的两种聊天功能(文末附源码下载地址)

    今天我们来盘一盘Socket通讯和WebSocket协议在即时通讯的小应用——聊天. 理论大家估计都知道得差不多了,小编也通过查阅各种资料对理论知识进行了充电,发现好多demo似懂非懂,拷贝回来又运行 ...

  4. C# 绘制PDF嵌套表格

    嵌套表格,即在一张表格中的特定单元格中再插入一个或者多个表格,使用嵌套表格的优点在于能够让内容的布局更加合理,同时也方便程序套用.下面的示例中,将介绍如何通过C#编程来演示如何插入嵌套表格到PDF文档 ...

  5. vue-router 页面布局

    在单页面应用程序(SPA)中,有些页面的布局结构是上下两块是固定,中间内容是变化的.这时在入口处固定上下部分就可以很好的解决这一问题.有少部分页面没有上下部分或不需要(如:用户注册.登陆页面),针对这 ...

  6. Java开发环境的搭建01——Eclipse篇(Windows)

    搭建环境是换项目组和新入职的开发入项都必须面临的一件事情,搭搭环境,一天就过去了...本着不浪费生命不做重复的无用功,在这里写写环境搭建的基本功,这篇是介绍Java环境搭建,常见的开发IDE无非就两种 ...

  7. Vue项目需求实现记录(永久更新)

    1.表单校验功能: 在el-form标签中定义:rules="rules";ref="reference" 在el-form-item定义prop=" ...

  8. SQLServer之多表联合查询

    多表联合查询简介 定义:连接查询是关系型数据库最主要的查询,通过连接运算符可以实现多个表连接数据查询. 分类:内连接,外连接,全外连接. 内连接 定义 内联接使用比较运算符根据每个表的通用列中的值匹配 ...

  9. 在原有数据库中使用 CodeFirst

    一.为当前实体模型启用数据迁移 1.Enable-Migrations -ContextTypeName EME.DBHelper.StoreContext(数据访问上下文) 2. Add-Migra ...

  10. java网络爬虫基础学习(一)

    刚开始接触java爬虫,在这里是搜索网上做一些理论知识的总结 主要参考文章:gitchat 的java 网络爬虫基础入门,好像要付费,也不贵,感觉内容对新手很友好. 一.爬虫介绍 网络爬虫是一个自动提 ...