论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey
目录
博客:blog.shinelee.me | 博客园 | CSDN
写在前面
paper:https://arxiv.org/abs/1809.02165
github:https://github.com/hoya012/deep_learning_object_detection,A paper list of object detection using deep learning
这篇综述对深度学习目标检测2014至201901取得的进展进行了总结,包括:
More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subprob-lems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance.
本文的主要目的在于摘录paper中的一些重要图表和结论,作为系统学习的索引,不做详细的展开。
下面两张图来自github,分别为paper list和performance table,红色为作者认为必读的paper。
目标检测任务与挑战
目标检测任务的输入是一张图像,输出是图像中的物体位置和类别,如下图所示,位置可通过Bounding Box描述,也可描述为像素的集合。
为了确定图片中物体的位置和类别,要面临很多挑战,一个好的检测器要做到定位准确、分类准确还要效率高,需要对光照、形变、尺度、视角、尺寸、姿态、遮挡、模糊、噪声等情况鲁棒,需要能容忍可能存在的较大的类内差异,又能区分开较小的类间差异,同时还要保证高效。
目标检测方法汇总
在2012年前,目标检测方法主要是人工特征工程+分类器,2012年后主要是基于DCNN的方法,如下图所示:
目标检测的框架可以分成2类:
- Two stage detection framework:含region proposal,先获取ROI,然后对ROI进行识别和回归bounding box,以RCNN系列方法为代表。
- One stage detection framework:不含region proposal,将全图grid化,对每个grid进行识别和回归,以YOLO系列方法为代表。
Pipeline对比与演化如下:
主干网络、检测框架设计、大规模高质量的数据集是决定检测性能的3个最重要的因素,决定了学到特征的好坏以及特征使用的好坏。
基础子问题
这一节谈论的重点包括:基于DCNN的特征表示、候选区生成、上下文信息、训练策略等。
基于DCNN的特征表示
主干网络(network backbone)
ILSVRC(ImageNet Large Scale Visual Recognition Competition)极大促进了DCNN architecture的改进,在计算机视觉的各种任务中,往往将这些经典网络作为主干网络(backbone),再在其上做各种文章,常用在目标检测任务中的DCNN architectures如下:
Methods For Improving Object Representation
物体在图像中的尺寸是未知的,图片中的不同物体尺寸也可能是不同的,而DCNN越深层的感受野越大,因此只在某一层上进行预测显然是难以达到最优的,一个自然的想法是利用不同层提取到的信息进行预测,称之为multiscale object detection,可分成3类:
- Detecting with combined features of multiple CNN layers
- Detecting at multiple CNN layers;
- Combinations of the above two methods
直接看图比较直观:
尝试对几何变形进行建模也是改善Object Representation的一个方向,方法包括结合Deformable Part based Models (DPMs)的方法、Deformable Convolutional Networks (DCN)方法等。
Context Modeling
上下文信息可以分为3类:
- Semantic context: The likelihood of an object to be found in some scenes but not in others;
- Spatial context: The likelihood of finding an object in some position and not others with respect to other objects in the scene;
- Scale context: Objects have a limited set of sizes relative to other objects in the scene.
DCNN通过学习不同抽象层级的特征可能已经隐式地使用了contextual information,因此目前的state-of-art目标检测方法并没有显式地利用contextual information,但近来也有一些显式利用contextual information的DCNN方法,可分为2类:Global context和Local context。
感觉可以在某种程度上看成是数据层面的集成学习。
Detection Proposal Methods
Two stage detection framework需要生成ROI。
生成ROI的方法,可以分为Bounding Box Proposal Methods和Object Segment Proposal Methods,前者回归出Bounding Box来描述ROI,后者通过分割得到像素集合来描述ROI。
Other Special Issues
通过data augmentation tricks(数据增广)可以得到更鲁棒的特征表示,可以看成是数据层面上的集成学习,考虑到物体尺度可大可小的问题,scaling是使用最多的数据增广方法。
Datasets and Performance Evaluation
以上。
论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey的更多相关文章
- zz深度学习目标检测2014至201901综述
论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey 发表于 2019-02-14 | 更新 ...
- 目标检测(一)RCNN--Rich feature hierarchies for accurate object detection and semantic segmentation(v5)
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik 该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当 ...
- 目标检测 | 经典算法 Cascade R-CNN: Delving into High Quality Object Detection
作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN ...
- 论文翻译——R-CNN(目标检测开山之作)
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...
- CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等
CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等 CVPR 2020中选论文放榜后,最新开源项目合集也来了. 本届CPVR共接收6656篇论文,中选1470篇,&q ...
- AI学习---深度学习&TensorFlow安装
深度学习 深度学习学习目标: 1. TensorFlow框架的使用 2. 数据读取(解决大数据下的IO操作) + 神经网络基础 3. 卷积神经网络的学习 + 验证码识别的案例 机器学习与深度学 ...
- 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...
- CVPR2020论文介绍: 3D 目标检测高效算法
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Clo ...
- 我在 B 站学习深度学习(生动形象,跃然纸上)
我在 B 站学习深度学习(生动形象,跃然纸上) 视频地址:https://www.bilibili.com/video/av16577449/ tensorflow123 http://tensorf ...
随机推荐
- ArcCore重构-头文件引用问题的初步解决
基于官方arc-stable-9c57d86f66be,AUTOSAR版本3.1.5 基本问题 1. 头文件引用混乱,所有头文件通过从搜索路径(-I)中引用,存在名称污染问题,需加入路径信息: ...
- 整理Cocos2d-x 面试题解
昨天听了腾讯2015校招的在线宣讲会,看到了游戏技术大拿Steven,他总结了需要的达人得爱技术,能坚持,够挑剔.马上校招了,加油吧,骚年~ 网上关于cocos2d-x的面试题比较少,这里搜集和整理了 ...
- hadoop HA 详解
NameNode 高可用整体架构概述 在 Hadoop 1.0 时代,Hadoop 的两大核心组件 HDFS NameNode 和 JobTracker 都存在着单点问题,这其中以 NameNode ...
- 条件随机场CRF(三) 模型学习与维特比算法解码
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基 ...
- 深入浅出 TCP/IP 协议
TCP/IP 协议栈是一系列网络协议的总和,是构成网络通信的核心骨架,它定义了电子设备如何连入因特网,以及数据如何在它们之间进行传输.TCP/IP 协议采用4层结构,分别是应用层.传输层.网络层和链路 ...
- flock SUSE/RHEL
Util-linux-2.26 Util-linux 软件包其它实用程序.包括处理文件系统.控制台.分区以及消息等工具. 大概编译时间:1.3 SBU 需要磁盘空间:137 MB 6.65.1. FH ...
- SSH整合配置文件概括
配置方式一:struts.xml, applicationContext.xml(hibernate.cfg.xml配置信息写入spring配置文件中) (版本号, struts2:2.3.15; s ...
- 功能强大的swagger-editor的介绍与使用
一.Swagger Editor简介 Swagger Editor是一个开源的编辑器,并且它也是一个基于Angular的成功案例.在Swagger Editor中,我们可以基于YAML等语法定义我们的 ...
- java通过反射获取字段的类型
import java.lang.reflect.Field; //这是需要引入的包 Field[] f = 类名.class.getDeclaredFields(); //获取该类的字段for(F ...
- React从入门到放弃之前奏(2):React简介
本系列将尽可能使用ES6(ES2015)语法.所以均在上节webpack的基础上做开发. React是Facebook开发的一款JS库,因为基于Virtual DOM,所以响应速度快,以及支持跨平台. ...