319. Kalevich Strikes Back

Time limit per test: 0.5 second(s)
Memory limit: 65536 kilobytes
input: standard
output: standard

And yet again the Berland community can see that talent is always multi-sided. The talent is always seeking new ways of self-expression. This time genius Kalevich amazed everybody with his new painting "Rectangular Frames". The masterpiece is full of impenetrable meaning and hidden themes.

Narrow black rectangular frames are drawn on a white rectangular canvas. No two frames have a common point. Sides of each frame are parallel to the sides of the canvas.

The painting is very big and the reduced replica cannot pass the idea of the original drawing. That's why Kalevich requested that the simplified versions of the masterpiece should be used as replicas. The simplified version is the sequence of the areas of all facets of the original. A facet is a connected enclosed white area within the painting. The areas in the sequence should be written in the non-decreasing order.

Input

The first line of the input contains an integer N (1 ≤ N ≤ 60000) — the number of the frames on the drawing. The second line contains integer numbers W and H (1 ≤ WH ≤ 108).

Let's introduce the Cartesian coordinate system in such a way that the left bottom corner of the canvas has (0, 0) coordinate and the right top corner has the (WH) coordinate. The sides of the canvas are parallel to the axes.

The following N lines contain the description of the frames. Each description is composed of the coordinates of the two opposite corners of the corresponding frame x1y1x2y2(1 ≤ x1x2 < W; 1 ≤ y1y2 < Hx1 != x2y1 != y2). All coordinates are integers. No two frames have a common point.

Output

Write the desired sequence to the output.

Example(s)
sample input
sample output
1
3 3
2 1 1 2
1 8

矩形不相交,可能会内含。

使用线段树的扫描线,搞出保含关系,然后dfs一遍。

 /* ***********************************************
Author :kuangbin
Created Time :2014/5/1 16:10:22
File Name :E:\2014ACM\专题学习\数据结构\线段树\SGU319.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
struct Node
{
int l,r;
int ll,rr;//实际的左右区间
int c;//覆盖标记,懒惰标记
}segTree[MAXN*];
int x[MAXN];
struct Line
{
int x1,x2,y;
int id;
Line(){}
Line(int _x1,int _x2,int _y,int _id)
{
x1 = _x1;
x2 = _x2;
y = _y;
id = _id;
}
}line[MAXN];
bool cmp(Line a,Line b)
{
return a.y < b.y;
}
void push_down(int r)
{
if(segTree[r].l + == segTree[r].r)return;
if(segTree[r].c != -)
{
segTree[r<<].c = segTree[(r<<)|].c = segTree[r].c;
segTree[r].c = -;
}
}
void build(int i,int l,int r)
{
segTree[i].l = l;
segTree[i].r = r;
segTree[i].ll = x[l];
segTree[i].rr = x[r];
segTree[i].c = ;
if(l+ == r)return;
int mid = (l+r)/;
build(i<<,l,mid);
build((i<<)|,mid,r);
}
int pre[MAXN];
void Update(int i,Line e)
{
if(segTree[i].ll == e.x1 && segTree[i].rr == e.x2)
{
if(e.id > )
segTree[i].c = e.id;
else segTree[i].c = pre[-e.id];
return;
}
push_down(i);
if(e.x2 <= segTree[i<<].rr)Update(i<<,e);
else if(e.x1 >= segTree[(i<<)|].ll)Update((i<<)|,e);
else
{
Line tmp = e;
tmp.x2 = segTree[i<<].rr;
Update(i<<,tmp);
tmp = e;
tmp.x1 = segTree[(i<<)|].ll;
Update((i<<)|,tmp);
}
}
int query(int i,Line e)
{
if(segTree[i].c != -)
return segTree[i].c;
if(e.x2 <= segTree[i<<].rr)return query(i<<,e);
else if(e.x1 >= segTree[(i<<)|].ll)return query((i<<)|,e);
else
{
e.x2 = segTree[i<<].rr;
return query(i<<,e);
}
}
long long area[MAXN];
vector<int>vec[MAXN];
void dfs(int u)
{
int sz = vec[u].size();
for(int i = ;i < sz;i++)
{
int v = vec[u][i];
area[u] -= area[v];
dfs(v);
}
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int w,h;
while(scanf("%d",&n) == )
{
scanf("%d%d",&w,&h);
area[] = (long long)w*h;
int x1,x2,y1,y2;
int tot = ;
for(int i = ;i <= n;i++)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if(x1 > x2)swap(x1,x2);
if(y1 > y2)swap(y1,y2);
area[i] = (long long)(x2-x1)*(y2-y1);
line[tot] = Line(x1,x2,y1,i);
x[tot++] = x1;
line[tot] = Line(x1,x2,y2,-i);
x[tot++] = x2;
}
sort(x,x+tot);
tot = unique(x,x+tot) - x;
build(,,tot-);
sort(line,line+*n,cmp);
for(int i = ;i <= n;i++)
vec[i].clear();
for(int i = ;i < *n;i++)
{
if(line[i].id > )
{
pre[line[i].id] = query(,line[i]);
vec[pre[line[i].id]].push_back(line[i].id);
}
Update(,line[i]);
}
dfs();
sort(area,area+n+);
for(int i = ;i <= n;i++)
{
printf("%I64d",area[i]);
if(i < n)printf(" ");
else printf("\n");
}
}
return ;
}

SGU 319. Kalevich Strikes Back (线段树)的更多相关文章

  1. SGU 319 Kalevich Strikes Back(线段树扫描线)

    题目大意: n个矩形,将一个大矩形分成 n+1 块.矩形之间不重合,可是包括.求这n+1个矩形的面积 思路分析: 用线段树记录他们之间的父子关系.然后dfs 计算面积. 当给出的矩形上边的时候,就要记 ...

  2. SGU 531. Bonnie and Clyde 线段树

    531. Bonnie and Clyde 题目连接: http://acm.sgu.ru/problem.php?contest=0&problem=531 Description Bonn ...

  3. SGU 311. Ice-cream Tycoon(线段树)

    311. Ice-cream Tycoon Time limit per test: 0.5 second(s)Memory limit: 65536 kilobytes input: standar ...

  4. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

  5. SGU - 311 Ice-cream Tycoon(线段树)

    Description You've recently started an ice-cream business in a local school. During a day you have m ...

  6. BestCoder Round #56 1002 Clarke and problem 1003 Clarke and puzzle (dp,二维bit或线段树)

    今天第二次做BC,不习惯hdu的oj,CE过2次... 1002 Clarke and problem 和Codeforces Round #319 (Div. 2) B Modulo Sum思路差不 ...

  7. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  8. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  9. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

随机推荐

  1. codeforces 381 D Alyona and a tree(倍增)(前缀数组)

    Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Python Webk框架学习 Flask

    Flask是一个使用Python编写的轻量级Web应用框架.基于Werkzeug WSGI工具箱和Jinja2 模板引擎. Flask使用BSD授权.Flask也被称为“microframework” ...

  3. 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

    Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23 摘要: ...

  4. 异步上传文件,ajax上传文件,jQuery插件之ajaxFileUpload

    http://www.cnblogs.com/kissdodog/archive/2012/12/15/2819025.html 一.ajaxFileUpload是一个异步上传文件的jQuery插件. ...

  5. Emmet 真是个好东西

    他的官网:http://docs.emmet.io/ 给广大程序员节省时间 #page>div.logo+ul#navigation>li*5>a{Item $}生产 <div ...

  6. SQL总结(六)触发器

    SQL总结(六)触发器 概念 触发器是一种特殊类型的存储过程,不由用户直接调用.创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行. 触发器可以查询其他表,而且可以包含复杂的 S ...

  7. linux -小记(3) 问题:linux 安装epel扩展源报错

    EPEL提供的软件包大多基于其对应的Fedora软件包,不会与企业版Linux发行版本的软件发生冲突或替换其文件. epel安装对应的rpm包 centos5 32位epel源下载地址: www.li ...

  8. UIScroView 3倍的contentSize,左右Scroll时,懒惰加载View

    UIScroView 3倍的contentSize,左右Scroll时,懒惰添加左右的View 用途:分段加载数据 定义枚举: typedefenum { ViewPositionLeft = , V ...

  9. JSP页面的隐含对象和Servlet程序里的对象之间的关联和区别

    首先,有两个概念: 1.JSP页面的域对象:pageContext,request,session,application对象(四个) void setAttribute(String name,Ob ...

  10. SQL Server 2012 创建数据库快照

    不是所有的MSSQL数据库版本都支持数据库快照,只有Enterprise版本的才支持. 在其他版本上,以Business Intelligence Edition版本为例,创建快照时,会报如下错误 消 ...