基于Theano的DL的开源小框架:Dragon
Link:https://github.com/neopenx/Dragon
起因
最近看了Hinton的Dropout,发现原来的乱代码只能在Softmax层前面加Dropout。索性把整个Theano封装了一遍了。
瞄了几眼Github上的Theano的另外一个封装Keras,然后按照自己风格手写了(看别人源码头疼)
Theano目前真是日薄西山了。Bengio做出了之后就不管了。直接去搞Pylearn2了
关键是Pylearn2还没有Caffe友好,CVPR15上,Caffe还展开了铺天盖地的宣传攻势。
尽管Github上各路大神各种Fork,但是最大问题是,CUDA部分根本没人能写。
由于Theano的工作方式类似函数式语言,像个黑盒子,留给User的空间也只有矩阵运算。
For循环之类的逻辑语句,就得重写CUDA。
特别是在CNN上,很多都是2012年后提出的非常重要的改善,不知道为什么不写了:
• Avg Pooling
• Overlapping Pooling
• Pooling with Padding
• Local Connected Layer
• Convolution with Maxout
• Convolution with Padding
所以,目前除了Bengio组自己搞的Pylearn2外,大部分Theano的封装项目看起来都差不多。就是把教程封装一下。
目前的实现
1. Layer
• DataLayer
• SoftmaxLayer
• FullyConnectedLayer
• ConvolutionLayer
• PoolingLayer(MAX)
• AutoEncodeLayer(Denoising)
• DropoutLayer
2. Alogorithm
• Mini_Batch
• Pre_Training
3. Activation
• Logistic
• Tanh
• ReLu
• Softplus
4. Weight_Init
• Xavier(Logistic&Tanh)
• Gaussian (Zero Mean)
数据处理
1.1 数据制作
在 data.process 下的 build_data(filename="data.pkl"):
这是个对二进制bin文件转换成python的pkl函数:
bin格式数据排布参照cifar10:http://www.cs.toronto.edu/~kriz/cifar.html
第一字节为label,后面每个字节代表一个pixel。
同时,参照了Caffe中强制计算mean的做法,顺带计算出了mean.pkl
1.2 数据输入
在 data.process 下的 loadData():
采用Theano的DL教学中的标准格式:
trainSet_X,trainSet_Y=sharedDataSet(trainSet)
vaildSet_X,vaildSet_Y=sharedDataSet(vaildSet)
dataSet=[(trainSet_X,trainSet_Y),(vaildSet_X,vaildSet_Y)]
不过默认还读取了mean.pkl
样例
1. Cifar10_CNN
from layer.core import *
from algorithm.SGD import Mini_Batch
from data.process import loadData
from layer.model import Model
if __name__ == '__main__':
dataSet=loadData()
cifar=Model(batch_size=100,lr=0.001,dataSet=dataSet,weight_decay=0.004)
neure=[32,32,64,64]
batch_size=100
cifar.add(DataLayer(batch_size,(32,32,3)))
cifar.add(ConvolutionLayer((batch_size,3,32,32),(neure[0],3,3,3),'relu','Gaussian',0.0001))
cifar.add(PoolingLayer())
cifar.add(ConvolutionLayer((batch_size,neure[0],15,15),(neure[1],neure[0],4,4),'relu','Gaussian',0.01))
cifar.add(PoolingLayer())
cifar.add(ConvolutionLayer((batch_size,neure[1],6,6),(neure[2],neure[1],5,5),'relu','Gaussian',0.01))
cifar.add(PoolingLayer())
cifar.add(FullyConnectedLayer(neure[2]*1*1,neure[3],'relu','Gaussian',0.1))
cifar.add(DropoutLayer(0.5))
cifar.add(SoftmaxLayer(neure[3],5,'Gaussian',0.1))
cifar.build_train_fn()
cifar.build_vaild_fn()
algorithm=Mini_Batch(model=cifar,n_epochs=100,load_param='cnn_params.pkl',save_param='cnn_params.pkl')
algorithm.run()
2. Cifar10_MLP
from layer.core import *
from algorithm.SGD import Mini_Batch
from data.process import loadData, loadScaleData
from layer.model import Model
if __name__ == '__main__':
dataSet=loadScaleData('data.pkl')
cifar=Model(batch_size=100,lr=0.01,dataSet=dataSet,weight_decay=0.0)
neure=[1000,1000,1000]
batch_size=100
cifar.add(DataLayer(batch_size,32*32*3))
cifar.add(FullyConnectedLayer(32*32*3,neure[0],'relu','Gaussian',0.1))
cifar.add(DropoutLayer(0.2))
cifar.add(FullyConnectedLayer(neure[0],neure[1],'relu','Gaussian',0.1))
cifar.add(DropoutLayer(0.2))
cifar.add(FullyConnectedLayer(neure[1],neure[2],'relu','Gaussian',0.1))
cifar.add(DropoutLayer(0.2))
cifar.add(SoftmaxLayer(neure[2],10))
cifar.pretrain()
cifar.build_train_fn()
cifar.build_vaild_fn()
algorithm=Mini_Batch(model=cifar,n_epochs=100,load_param='mlp_params.pkl',save_param='mlp_params.pkl')
algorithm.run()
基于Theano的DL的开源小框架:Dragon的更多相关文章
- (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
- 分享一个以前写的基于C#语言操作数据库的小框架
一:前言 这个是以前写的操作MySQL数据库的小型框架,如果是中小型项目用起来也是很不错的,里面提供Filter.ModelPart.Relationship等机制实现操作数据库时的SQL语句的拼接和 ...
- 利用jdbc简单封装一个小框架(类似DBUtils)
利用jdbc写的一个类似DBUtils的框架 package com.jdbc.orm.dbutils; import java.io.IOException; import java.io.Inpu ...
- Pomelo:网易开源基于 Node.js 的游戏服务端框架
Pomelo:网易开源基于 Node.js 的游戏服务端框架 https://github.com/NetEase/pomelo/wiki/Home-in-Chinese
- 两个基于C++/Qt的开源WEB框架
1.tufao 项目地址: https://github.com/vinipsmaker/tufao 主页: http://vinipsmaker.github.io/tufao/ 介绍: Tufão ...
- 基于Theano的深度学习框架keras及配合SVM训练模型
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch, ...
- 任务驱动,对比式学习.NET开发系列之开篇------开源2个小框架(一个Winform框架,一个Web框架)
一 源码位置 1. Winform框架 2. web框架 二 高效学习编程的办法 1 任务驱动方式学习软件开发 大部分人学习软件开发技术是通过看书,看视频,听老师上课的方式.这些方式有一个共同点即按知 ...
- 开源一个基于dotnet standard的轻量级的ORM框架-Light.Data
还在dotnet framework 2.0的时代,当时还没有EF,而NHibernate之类的又太复杂,并且自己也有一些特殊需求,如查询结果直接入表.水平分表和新增数据默认值等,就试着折腾个轻量点O ...
- GPUImage ==> 一个基于GPU图像和视频处理的开源iOS框架
Logo 项目介绍: GPUImage是Brad Larson在github托管的开源项目. GPUImage是一个基于GPU图像和视频处理的开源iOS框架,提供各种各样的图像处理滤镜,并且支持照相机 ...
随机推荐
- 谈谈我的编程之路---WAMP(三)
WAMP的一些配置与使用心得(APACHE)说实话,我感觉apache的配置真的还是蛮复杂的,感觉好像又在学一种语言,让我用比较庞大的概念来讲述这些东西,我也没办法做到就以实际应用出发出发,简单的说一 ...
- 【javascript】 for循环小技巧
最近在读[Jquery技术内幕],里面介绍了一种js for循环的实用写法. 一般写for循环是这么写的: var elemts = [1,2,3,4,5]; for(var i=0; i<el ...
- 基于类和基于函数的python多线程样例
不断的练,加深记忆吧. #!/usr/bin/env python # -*- coding: utf-8 -*- import threading import time exitFlag = 0 ...
- 【openGL】指定着色模型
#include "stdafx.h" #include <GL/glut.h> #include <stdlib.h> #include <math ...
- IOS 100 - level2 Boss
创建第一个app, buid, run. 过程 1 首先是按照知乎上的推荐去看了传说中的公开课了.看到第二集的时候觉得有种回到大学听老师上课的感觉--昏昏欲睡. 代码是一门实践课程,我觉得自己实现点东 ...
- IOS 100 - 1 开工闲聊
1 前言 现在的行情,作为码农,ios 普遍比c# 的待遇好上不少.感觉就如清洁工人,扫厕所干的再高效和干净,一个月就那么点微薄的收入.当然你可以选择去香港打扫卫生间,那里的行情据说清洁工也破万了.说 ...
- 7-11使用UNION合并查询
合并查询的语法: SELECT ...FROM 表名一 UNION SELECT ...FROM 表名二 合并查询的特点: 1: 合并表中的列的个数,数据类型数据类型相同或兼容. 2:UNION 默 ...
- 免费电子书:C#代码整洁之道
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:<Clean Code(代码整洁之道)>是一本经典的著作,那么对于编写整洁 ...
- WebBrowser控件打开https站点
背景: 与上一篇博文一样,此文亦是由于开发DropboxAPI中遇到问题衍生出来的.由于需要重定向https类型网站,但自己的https证书是自签名的,总是提示'网站的安全证书存在问题'. 鉴此,查了 ...
- NuGet学习笔记(1) 初识NuGet及快速安装使用
关于NuGet园子里已经有不少介绍及使用经验,本文仅作为自己研究学习NuGet一个记录. 初次认识NuGet是在去年把项目升级为MVC3的时候,当时看到工具菜单多一项Library Package M ...