这道题是欧拉函数的使用,这里简要介绍下欧拉函数。

  欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数。

  欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pkak为正整数n的素数幂分解,那么φ(n) = n·(1-1/p1)·(1-1/p2)·(1-1/p3)···(1-1/pk)

          2.如果n是质数,则φ(n) = n-1;  反之,如果p是一个正整数且满足φ(p)=p-1,那么p是素数。

          3.设n是一个大于2 的正整数,则φ(n)是偶数

          4.当n为奇数时,有φ(2n)=φ(n)

          5.设m和n是互质的正整数,那么φ(mn)=φ(m)φ(n)

(1)可以根据性质1,写出计算欧拉函数值的程序:  复杂度为O(√n)

 //直接求解欧拉函数
int euler(int n){ //返回euler(n)
int res=n;
for(int i=;i*i<=n;i++){
if(n%i==){
res=res/i*(i-);//先进行除法是为了防止中间数据的溢出
while(n%i==) n/=i;
}
}
if(n>) res=res/n*(n-);
return res;
}

(2)上面这种写法中,在for循环中选择i时,是顺序选择的。事实上性质1 中的p1、p2、p3、p4、...pk都是质数。如果在选择时,直接选择质数进行判断,那结果会优化很多。

可以先把50000以内的素数用筛法选出来并保存,以方便欧拉函数使用。这样,在不考虑筛法的时间复杂度,而单看欧拉函数,其复杂度变为O(x),x为√n以内素数的个数。

 #include <cstring>
bool boo[];int p[]; void prim(){
//线性筛素数
memset(boo,,sizeof(boo));
boo[]=boo[]=;
int k=;
for(int i=;i<;i++){
if(!boo[i]) p[k++]=i;
for(int j=;j<k&&i*p[j]<;j++){
boo[i*p[j]] = ;
count++;
if(!(i%p[j])) break;
}
} } int phi(int n){
int rea = n;
for(int i=;p[i]*p[i]<=n;i++ ){ //对一些不是素数的可不用遍历
if(n%p[i]==){
rea = rea-rea/p[i];
while(n%p[i]==) n/=p[i];
}
}
if(n>) rea-=rea/n;
return rea;
}

(3)递推求欧拉函数

    如果频繁的要使用欧拉函数值,就需要预先打表。复杂度约为O(nlnn)

 //递推法打欧拉函数表
#define Max 1000001
int phi[Max];
void Init(){
for(int i=;i<=Max;i++) phi[i]=i;
for(int i=;i<=Max;i+=) phi[i]/=;
for(int i=;i<=Max;i+=)
if(phi[i]==i)
for(int j=i;j<=Max;j+=i)
phi[j]=phi[j]/i*(i-);//先进行除法是为了防止中间数据的溢出
}

应用:NYOJ 998   http://acm.nyist.net/JudgeOnline/problem.php?pid=998

这道题的精华如何将符合条件的gcd(x,n)表达出来:见代码  d*Euler(n/d)  中为什么乘以d的解释  。

然后是遍历一遍小于n的数,测试每个符合的数加起来即可。其实还可以更快,观察发现,在能够整除n的i里面,相对应的n/i也有相似的性质,这样以来只需要遍历到sqrt(n)即可。

网络摘抄代码如下:

 #include<iostream>
#include<cstdio>
using namespace std; typedef long long LL;
LL Euler(LL n){
LL ans = n;
for(int i = ; i * i <= n; i++){
if(n % i == ){
ans = ans / i * (i-);
while(n % i == )
n /= i;
}
}
if(n > ) ans = ans / n * (n-);
return ans;
} int main(){
LL n,m;
while(cin>>n>>m){
LL ans = ;
for(int i = ; i * i <= n; i++){
if(n % i == ){
if(i >= m){
int d = i;
ans += d*Euler(n/d);
// 考虑 gcd(x,n) 1=<x<=n
//这个的由来是 gcd(x/d,n/d) = 1.如果我们取一个能让n/d取整数的d的取值,于是我们
//取到了n%i==0的i,于是 能够满足gcd(x,n) = d 的x的个数为Euler(n/d)个
//那么在该gcd = d 的情况下需要加到ans里面的d的个数就是Euler(n/d)个 ,所以有ans+=d*Euler(n/d) }
if(i * i != n && n / i >= m){
int d = n / i;
ans += d*Euler(n/d);
}
}
}
cout<<ans<<endl;
}
return ;
}
												

NYOJ 998的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  3. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  4. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  5. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

  6. nyoj 284 坦克大战 简单搜索

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=284 题意:在一个给定图中,铁墙,河流不可走,砖墙走的话,多花费时间1,问从起点到终点至少 ...

  7. nyoj 170 网络的可靠性

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=170 思路:统计每个节点的度,将度为1的节点消去所需要的最少的边即为答案. 代码: #in ...

  8. nyoj 139 我排第几个--康拓展开

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说 ...

  9. 基于贪心算法的几类区间覆盖问题 nyoj 12喷水装置(二) nyoj 14会场安排问题

    1)区间完全覆盖问题 问题描述:给定一个长度为m的区间,再给出n条线段的起点和终点(注意这里是闭区间),求最少使用多少条线段可以将整个区间完全覆盖 样例: 区间长度8,可选的覆盖线段[2,6],[1, ...

随机推荐

  1. Angular2学习笔记(1)

    Angular2学习笔记(1) 1. 写在前面 之前基于Electron写过一个Markdown编辑器.就其功能而言,主要功能已经实现,一些小的不影响使用的功能由于时间关系还没有完成:但就代码而言,之 ...

  2. wepack+sass+vue 入门教程(三)

    十一.安装sass文件转换为css需要的相关依赖包 npm install --save-dev sass-loader style-loader css-loader loader的作用是辅助web ...

  3. 阿里签名中URLEncode于C#URLEncod不同之处

    问题 如上图所示,阿里云的PercentEncode 转换! 为 %21 PercentEncode 源码为: package com.aliyuncs.auth; import java.io.Un ...

  4. (JS+CSS)实现图片放大效果

    代码很简单,在这里就不过多阐述,先上示例图: 实现过程: html部分代码很简单 <div id="outer"> <p>点击图片</p> &l ...

  5. ASP.NET MVC5+EF6+EasyUI 后台管理系统(76)-微信公众平台开发-网页授权

    前言 网页授权是:应用或者网站请求你用你的微信帐号登录,同意之后第三方应用可以获取你的个人信息 网上说了一大堆参数,实际很难理解和猜透,我们以实际的代码来演示比较通俗易懂 配置 实现之前我们必须配置用 ...

  6. EventBus实现activity跟fragment交互数据

    最近老是听到技术群里面有人提出需求,activity跟fragment交互数据,或者从一个activity跳转到另外一个activity的fragment,所以我给大家介绍一个开源项目,EventBu ...

  7. WebForm获取GET或者POST参数到实体的转换,ADO.NET数据集自动转换实体

    最近在修改维护以前的webform项目(维护别人开发的.....)整个aspx没有用到任何的控件,这个我也比较喜欢不用控件所以在提交信息的时候需要自己手动的去Request.QueryString[] ...

  8. Java 经典入门(一)

    一.什么是 Java 技术?为何需要 Java? Java 是由 Sun Microsystems 在 1995 年首先发布的编程语言和计算平台.有许多应用程序和 Web 站点只有在安装 Java 后 ...

  9. 【iOS】Xcode8+Swift3 纯代码模式实现 UICollectionView

    开发环境 macOS Sierra 10.12.Xcode 8.0,如下图所示: 总体思路 1.建立空白的storyboard用于呈现列表 2.实现自定义单个单元格(继承自:UICollectionV ...

  10. TabLayout + ViewPager

    一.实现思路 1.在build.gradle中添加依赖,例如: compile 'com.android.support:support-v4:23.4.0'compile 'com.android. ...