题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/M

题目:

Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 

Sample Input

3
0.04  3
1  0.02
2  0.03
3  0.05
0.06  3
2  0.03
2  0.03
3  0.05
0.10  3
1  0.03
2  0.02
3  0.05
 

Sample Output

2
4
6       
 题意:
   求出在规定的概率内,能拿到的最多的钱。   
分析:
       把每个银行的储钱量之和当成背包容量,然后概率当成价值来求。
 这里是被抓的概率,我们把他转化成不被抓的概率。
 状态:f[j]:表示一共抢了j元的最大逃脱率;
 状态转移方程:f[j]=max{f[j],f[j-m[i]]*(1-q[i])}

 

 #include<iostream>
#include<cstring>
using namespace std;
double q[],f[];
int m[];
double max(double a,double b)
{
if(a>b) return a;
else return b;
}
int main()
{
int t,n,i,j,M;
double p;
cin>>t;
while(t--)
{
M=;
memset(f,,sizeof(f));
cin>>p>>n;
for(i=;i<=n;i++)
{
cin>>m[i]>>q[i];
M=M+m[i];
}
f[]=;
for(i=;i<=n;i++)
for(j=M;j>=m[i];j--)
f[j]=max(f[j],f[j-m[i]]*(-q[i]));
for(i=M;i>=;i--)
{
if(f[i]>=-p)
{
cout<<i<<endl;
break;
}
}
}
return ;
}
 
 

HDU 2955(0-1背包问题)的更多相关文章

  1. HDU 2955(01背包问题)

    M - 01背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Descript ...

  2. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  3. HDU 4370 0 or 1 (最短路+最小环)

    0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...

  4. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  5. HDU - 4370 0 or 1

    0 or 1 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  7. Java实现动态规划法求解0/1背包问题

    摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...

  8. Hdu 2955 Robberies 0/1背包

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. hdu 2955 01背包

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 如果认为:1-P是背包的容量,n是物品的个数,sum是所有物品的总价值,条件就是装入背包的物品的体积和不能 ...

随机推荐

  1. WPF中查看PDF文件

    需要打开PDF文件时,我们第一印象就是使用Adobe Reader.在开发中,经常会遇到需要展示PDF文件的需求.我们会借助于Adobe Reader的Active控件来实现.不过这需要客户的机器上安 ...

  2. hdu 2232 矩阵 ***

    一天四个不同的机器人a.b.c和d在一张跳舞毯上跳舞,这是一张特殊的跳舞毯,他由4个正方形毯子组成一个大的正方形毯子,一开始四个机器人分别站在4 块毯子上,舞蹈的每一步机器人可以往临近(两个毯子拥有同 ...

  3. 总结列表显示ListView知识点

    全选ListView的item条目 单选ListView的条目 多选ListView的item条目 自定义ArrayAdapter动态改变ListView的不同item样式 动态增加和删除ListVi ...

  4. C# 对象转换为byte[] ,byte[]还原对象

    /// <summary>  /// 将一个object对象序列化,返回一个byte[]          /// </summary>  /// <param name ...

  5. Android adb的使用

    参考:http://blog.csdn.net/veryitman/article/details/6437090 1. 进入shell 进入设备shell adb shell 2. 安装 apk & ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. Eclipse的详细安装步骤

    第一种:这个方法是在线安装的  第二种:下载完整免安装包 首先打开网址:http://www.eclipse.org/ 然后在这里我就选择64位的安装,就以安装安卓开发的举例: 然后下载即可:

  8. MySQL的中文编码问题

    创建表格时,怎么让表格显示中文?注意:不区分大小写 mysql> ALTER TABLE 表格的名字 CONVERT TO CHARACTER SET UTF8; 怎么让默认的数据库支持中文字符 ...

  9. SpringRMI解析3-RmiServiceExporter逻辑细节

    在发布RMI服务的流程中,有几个步骤可能是我们比较关心的. 获取registry 由于底层的封装,获取Registry实例是非常简单的,只需要使用一个函数LocateRegistry.createRe ...

  10. 常用函数的DTFT变换对和z变换对

    直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对