题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/M

题目:

Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 

Sample Input

3
0.04  3
1  0.02
2  0.03
3  0.05
0.06  3
2  0.03
2  0.03
3  0.05
0.10  3
1  0.03
2  0.02
3  0.05
 

Sample Output

2
4
6       
 题意:
   求出在规定的概率内,能拿到的最多的钱。   
分析:
       把每个银行的储钱量之和当成背包容量,然后概率当成价值来求。
 这里是被抓的概率,我们把他转化成不被抓的概率。
 状态:f[j]:表示一共抢了j元的最大逃脱率;
 状态转移方程:f[j]=max{f[j],f[j-m[i]]*(1-q[i])}

 

 #include<iostream>
#include<cstring>
using namespace std;
double q[],f[];
int m[];
double max(double a,double b)
{
if(a>b) return a;
else return b;
}
int main()
{
int t,n,i,j,M;
double p;
cin>>t;
while(t--)
{
M=;
memset(f,,sizeof(f));
cin>>p>>n;
for(i=;i<=n;i++)
{
cin>>m[i]>>q[i];
M=M+m[i];
}
f[]=;
for(i=;i<=n;i++)
for(j=M;j>=m[i];j--)
f[j]=max(f[j],f[j-m[i]]*(-q[i]));
for(i=M;i>=;i--)
{
if(f[i]>=-p)
{
cout<<i<<endl;
break;
}
}
}
return ;
}
 
 

HDU 2955(0-1背包问题)的更多相关文章

  1. HDU 2955(01背包问题)

    M - 01背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Descript ...

  2. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  3. HDU 4370 0 or 1 (最短路+最小环)

    0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...

  4. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  5. HDU - 4370 0 or 1

    0 or 1 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  7. Java实现动态规划法求解0/1背包问题

    摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...

  8. Hdu 2955 Robberies 0/1背包

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. hdu 2955 01背包

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 如果认为:1-P是背包的容量,n是物品的个数,sum是所有物品的总价值,条件就是装入背包的物品的体积和不能 ...

随机推荐

  1. Debian下安装vim

    问题描述:安装完系统以后,刚要打算开始写程序,发现,vim还没有装,用su -切换到root后 直接运行apt-get install vim,提示插入disc源,然后回车,陷入无法解决的状态. 上网 ...

  2. 配置ogg异构oracle-mysql(1)基础环境配置

    一.环境描述: 192.168.0.164 ( Oracle ) —> 192.168.0.165 (Mysql ) 版本: 操作系统:redhat5.8 Oracle:  11.2.0.3 M ...

  3. 咱就入个门之NHibernate映射文件配置(二)

    上一篇主要介绍了NHibernate映射文件的基础配置,这篇我们介绍下NHibernate的一对多及多对一配置(文中我直接使用双向关联,即一和多两端都配置,开发中可以只使用一端),同时略带介绍下NHi ...

  4. mathematica练习程序(获得股票数据)

    从去年的11月开始,中国的股市就一直大涨,不知道这次能持续多长时间. 为了获得股票数据,我用matlab试了网上的一些方法,总是失败,所以就改用mathematica,一行代码就可以了. DateLi ...

  5. jquery中append()、prepend()、after()、before()的区别详解

    append() - 在被选元素的结尾插入内容(内容的结尾,比如说有个a标签,则是在</a>这个标签之前添加东西) prepend() - 在被选元素的开头插入内容(内容的开始,比如说有个 ...

  6. ontouchstart

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta cont ...

  7. 用户视角 vs 系统视角 看性能

    如何评价性能的优劣: 用户视角 vs. 系统视角 对于最终用户(End-User)来说,评价系统的性能好坏只有一个字——“快”.最终用户并不需要关心系统当前的状态——即使系统这时正在处理着成千上万的请 ...

  8. loopback 02

    数据库连接操作,以mongodb为例 安装loopback-connector-mongodb 修改datasources.json //例子 { "db": { "na ...

  9. express-13 中间件

    简介 从概念上讲,中间件是一种功能的封装方式,具体来说就是封装在程序中处理HTTP请求的功能. 中间件是在管道中执行的,在Express程序中,通过调用app.use向管道中插入中间件.(在Expre ...

  10. 寒冰王座(DGA最长路/完全背包)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...