最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的。刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网上看了一些大神的理解,觉得恍然大悟。

  定义dp[i][j]表示字符串a前i个和字符串b的前j个且以b[j]结尾构成的最长公共上升子序列的长度,定义一个max用来保存最大的长度。用两个循环,外层循环控制字符串a,内层循环控制字符串b。如果a[i]不等于b[j],则dp[i][j]=dp[i-1][j];如果a[i]大于b[j]而且max<dp[i-1][j],则max=dp[i-1][j];如果a[i]等于b[j],则dp[i][j]=max+1。最后的答案在dp[n][1~m]中最大的。(注意,这种情况是字符串都是从下标为1开始存的)

  下面是例题:  杭电1423

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3482    Accepted Submission(s):
1098

Problem Description
This is a problem from ZOJ 2432.To make it easyer,you
just need output the length of the subsequence.
 
Input
Each sequence is described with M - its length (1 <=
M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence
itself.
 
Output
output print L - the length of the greatest common
increasing subsequence of both sequences.
 
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
 
Sample Output
2
 
代码如下:
 #include <iostream>
using namespace std;
int t,n,m;
int a[],b[];
int dp[][]; int LCIS()
{
int i,j;
int max;
for(i=;i<=n;i++)
{
max = ;
for(j=;j<=m;j++)
{
dp[i][j] = dp[i-][j];
if (a[i]>b[j] && max<dp[i-][j])
max = dp[i-][j];
if(a[i] == b[j])
dp[i][j] = max + ;
}
}
max = ;
for(i=;i<=m;i++)
if(max<dp[n][i])
max = dp[n][i];
return max;
} int main()
{
int i,j;
cin>>t;
while(t--)
{
cin>>n;
for(i=;i<=n;i++)
cin>>a[i];
cin>>m;
for(j=;j<=m;j++)
cin>>b[j];
memset(dp,,sizeof(dp));
cout<<LCIS()<<endl;
if (t)
cout<<endl;
}
}

  其实还有一种更牛的方法是采用一维数组,但是时间还是n^2。当i循环到k的时候,原来dp[i]表示原来的dp[k][j],因为当a[i]!=b[j]的时候dp[i]的值是不变的,沿用过去的值就行了,只有当a[i]==b[j]的时候才需要更新dp[i]的值。

代码如下:

 #include <iostream>
using namespace std;
int t,n,m;
int a[],b[];
int dp[]; int LCIS()
{
int i,j;
int max;
for(i=;i<=n;i++)
{
max = ;
for(j=;j<=m;j++)
{
if (a[i]>b[j] && max<dp[j])
max = dp[j];
if(a[i] == b[j])
dp[j] = max + ;
}
}
max = ;
for(i=;i<=m;i++)
if(max<dp[i])
max = dp[i];
return max;
} int main()
{
int i,j;
cin>>t;
while(t--)
{
cin>>n;
for(i=;i<=n;i++)
cin>>a[i];
cin>>m;
for(j=;j<=m;j++)
cin>>b[j];
memset(dp,,sizeof(dp));
cout<<LCIS()<<endl;
if (t)
cout<<endl;
}
}

最长公共上升子序列(LCIS)的更多相关文章

  1. [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]

      Virus  We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...

  2. hdu 1423 最长公共递增子序列 LCIS

    最长公共上升子序列(LCIS)的O(n^2)算法 预备知识:动态规划的基本思想,LCS,LIS. 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列). 首先我们可以看到,这个问题具有相 ...

  3. 动态规划——最长公共上升子序列LCIS

    问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...

  4. HDU1423 最长公共上升子序列LCIS

    Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...

  5. LCIS最长公共上升子序列

    最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...

  6. [CodeForces10D]LCIS(最长公共上升子序列) - DP

    Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...

  7. LCIS 最长公共上升子序列问题DP算法及优化

    一. 知识简介 学习 LCIS 的预备知识: 动态规划基本思想, LCS, LIS 经典问题:给出有 n 个元素的数组 a[] , m 个元素的数组 b[] ,求出它们的最长上升公共子序列的长度. 例 ...

  8. CF10D LCIS 最长公共上升子序列

    题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1}, ...

  9. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

随机推荐

  1. 【Go语言】LiteIDE使用的个人使用方法

    Go语言开发 可以使用的IDE很多 (Goclipse,sublime,notepad++,vim等)目前使用的最顺手的就是LiteIDE了 但是尽管这样,一开始使用LiteIDE也有很多不习惯的地方 ...

  2. 相邻div实现一个跟着另一个自适应高度示例代码

    方法一: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> < ...

  3. 移位运算符(JAVA)

    java中有三种移位运算符 <<      :     左移运算符,num << 1,相当于num乘以2 >>     :     右移运算符,num >&g ...

  4. [LintCode] Left Pad 左填充

    You know what, left pad is javascript package and referenced by React: Github link One day his autho ...

  5. [CareerCup] 17.1 Swap Number In Place 互换位置

    17.1 Write a function to swap a number in place (that is, without temporary variables). 这道题让我们交换两个数, ...

  6. java-两个大数相加

    题目要求:用字符串模拟两个大数相加. 一.使用BigInteger类.BigDecimal类 public static void main(String[] args) { String a=&qu ...

  7. JAVA中保留指定小数位方法

    import java.math.BigDecimal;    import java.text.DecimalFormat;    import java.text.NumberFormat;    ...

  8. POJ2488 dfs

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 41972   Accepted: 14 ...

  9. Webform——中国省市三级联动以及IsPostBack

    首先要明白Webform的运行顺序,当开始启动时候,首先执行的是Page_Load事件, 当点击任意按钮后,每次点击都要先执行一遍Page_Load(在这里Page_Load里面的事件是给数据控件加载 ...

  10. zju(3)内核编译与运行

    1.实验目的 学习和掌握Linux配置和编译的基本步骤. 二.实验内容 1. 对Linux内核及用户程序进行配置: 2. 编译生成内核映像文件: 3. 把编译的映像文件烧写到FLASH中,查看运行结果 ...