2015多校.Zero Escape (dp减枝 && 滚动数组)
Zero Escape
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 289 Accepted Submission(s): 135
Stilwell is enjoying the first chapter of this series, and in this chapter digital root is an important factor.
This is the definition of digital root on Wikipedia:
The digital root of a non-negative integer is the single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.
For example, the digital root of 65536 is 7, because 6+5+5+3+6=25 and 2+5=7.
In the game, every player has a special identifier. Maybe two players have the same identifier, but they are different players. If a group of players want to get into a door numbered X(1≤X≤9), the digital root of their identifier sum must be X.
For example, players {1,2,6} can get into the door 9, but players {2,3,3} can't.
There is two doors, numbered A and B. Maybe A=B, but they are two different door.
And there is n players, everyone must get into one of these two doors. Some players will get into the door A, and others will get into the door B.
For example:
players are {1,2,6}, A=9, B=1
There is only one way to distribute the players: all players get into the door 9. Because there is no player to get into the door 1, the digital root limit of this door will be ignored.
Given the identifier of every player, please calculate how many kinds of methods are there, mod 258280327.
For each test case, the first line contains three integers n, A and B.
Next line contains n integers idi, describing the identifier of every player.
T≤100, n≤105, ∑n≤106, 1≤A,B,idi≤9
3 9 1
1 2 6
3 9 1
2 3 3
5 2 3
1 1 1 1 1
9 9 9
1 2 3 4 5 6 7 8 9
0
10
60
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int M = 1e5 + , mod = ;
int n , A , B ;
int a[M] ;
int dp[][][] ;
int get (int x) {
return x/ + x% ;
} //void solve () {
// int cur = 0, nxt = 1;
// dp[0][0][0] = 1 ;
// for(int i = 1 ; i <= n ; i ++) {
// for (int j = 0 ; j < 10 ; j ++) {
// for (int k = 0 ; k < 10 ; k ++) if (dp[i - 1][j][k] > 0) {
// dp[i][ get(j+a[i]) ][k] = (dp[i][ get(j+a[i]) ][k] + dp[i-1][j][k]) % mod ;
// dp[i][j][ get(k+a[i]) ] = (dp[i][j][ get(k+a[i]) ] + dp[i-1][j][k]) % mod ;
// }
// }
// }
// //cout << dp[n][A][B] << " " << dp[n][A][0] << " " << dp[n][0][B] << endl ;
// printf ("%d\n" , ((dp[n][A][B] + dp[n][A][0]) % mod + dp[n][0][B]) % mod) ;
//} void add (int &x , int y) {
x += y ;
if (x > mod) x -= mod ;
} void solve () {
int cur = , nxt = ;
memset (dp[cur] , , sizeof(dp[cur])) ;
dp[cur][][] = ;
for (int i = ; i <= n ; i ++) {
memset (dp[nxt] , , sizeof(dp[nxt])) ;
for (int j = ; j < ; j ++) {
for (int k = ; k < ; k ++) {
if (dp[cur][j][k] == ) continue ;
add (dp[nxt][ get(j+a[i]) ][k] , dp[cur][j][k]) ;
add (dp[nxt][j][ get(k+a[i]) ] , dp[cur][j][k]) ;
}
}
swap (cur , nxt) ;
}
printf ("%d\n" , ((dp[cur][A][B] + dp[cur][A][]) % mod + dp[cur][][B]) % mod) ;
} int main () {
int T ;
scanf ("%d" , &T ) ;
while (T --) {
scanf ("%d%d%d" , &n , &A , &B) ;
for (int i = ; i <= n ; i ++) {
scanf ("%d" , &a[i]) ;
//memset (dp[i] , 0 , sizeof(dp[i])) ;
}
a[] = ;
solve () ;
}
return ;
}
2015多校.Zero Escape (dp减枝 && 滚动数组)的更多相关文章
- 2017 Hackatari Codeathon C. Arcade(DP)(滚动数组)
C. Arcade time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...
- hdu5745 La Vie en rose 巧妙地dp+bitset优化+滚动数组减少内存
/** 题目:hdu5745 La Vie en rose 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5745 题意:题目给出的变换规则其实就是交换相邻 ...
- 字符串匹配dp+bitset,滚动数组优化——hdu5745(经典)
bitset的经典优化,即把可行性01数组的转移代价降低 bitset的适用情况,当内层状态只和外层状态的上一个状态相关,并且内层状态的相关距离是一个固定的数,可用bitset,换言之,能用滚动数组是 ...
- 【AC自动机】【状压dp】【滚动数组】hdu6086 Rikka with String
给你m个01串,问你有多少个长度为2L的01串,满足前半段倒置取反后等于后半段,并且包含所有的m个01串. 考虑单词完全在中线前面或者后面的情况,直接将单词及其倒置取反插入AC自动机,AC自动机每个结 ...
- 【概率dp】【滚动数组】CDOJ1652 都市大飙车
转移方程很显然. 因为是多段图模型,所以可以滚动数组优化一维空间. #include<cstdio> #include<cstring> using namespace std ...
- Palindrome_滚动数组&&DP
Description A palindrome is a symmetrical string, that is, a string read identically from left to ri ...
- poj1159 dp(滚动数组优化)
H - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:3000MS Memory Limit:65536KB ...
- DP一直是自己的弱势 开始练滚动数组——HDOJ4502
http://acm.hdu.edu.cn/showproblem.php?pid=4502//题目链接 思路 : dp[i]表示 到第i天能获得的最大工资 依次更新 #include<cst ...
- hdu5389 Zero Escape DP+滚动数组 多校联合第八场
Zero Escape Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) To ...
随机推荐
- Aspx生命周期
今天去面试,碰到面试官问这个问题.aspx页面生命周期是什么?顿时懵逼 还跟我解释:就是页面怎么解析的aspx页面.果断没看过这方面知识,没答上来.现在记录一下 ASP.NET页面生命周期 ASP.N ...
- .net中ckeditor的应用
①js文件的引入 <script src="/public/ckeditor_4.4.7/ckeditor.js"></script> <script ...
- [Android]关于Activity的InstanceState
Activity有两个方法onSaveInstanceState() 和 onRestoreInstanceState(). onSaveInstanceState()方法只适合用于保存一些临时性的状 ...
- JavaWeb学习总结-04 Servlet 学习和使用
一 Servlet 1 Servlet概念 Servlet时运行在服务器端的Java程序. Servlet的框架核心是 javax.servlet.Servlet 接口. 所有自定义的Servlet都 ...
- Manacher算法
Manacher算法是求回文串最高效的算法,能在线性时间内求出以每一个字符为中心的最长回文串. 首先,我们都能想出$O(N^2)$求出每一个字符为中心的最长回文串的算法.那么我们考虑这样一种情况. ...
- 理解和使用 JavaScript 中的回调函数
理解和使用 JavaScript 中的回调函数 标签: 回调函数指针js 2014-11-25 01:20 11506人阅读 评论(4) 收藏 举报 分类: JavaScript(4) 目录( ...
- JavaWeb---总结(十四)JSP原理
一.什么是JSP? JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. JSP这门技术的最大的特点在于,写jsp就像在写h ...
- JQuery------prevAll(),nextAll(),attr()方法的使用
$(this).nextAll(".Rec").find("input").attr("checked", false); $(this). ...
- WEB开发基本知识
参考文献:http://www.cnblogs.com/xdp-gacl/p/3729033.html 一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示I ...
- OpenGL教程
http://www.opengl-tutorial.org/ http://www.lighthouse3d.com/ http://www.arcsynthesis.org/gltut/ http ...