time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output

An undirected graph is called a caterpillar if it is a connected graph without cycles and it has such a path p that any vertex is located at a distance of at most 1 from the path p. The caterpillar can contain loops (edges from a vertex to itself) but cannot contain multiple (parallel) edges.

The picture contains an example of a caterpillar:

You are given an undirected graph G. You are allowed to do a merging operations, each such operation merges two vertices into one vertex. For that two any vertices a and b (a ≠ b) are chosen. These verteces are deleted together with their edges (which are incident to at least one of the vertices a or b) but a new vertex w is added together with edges (x, w) for each edge (a, w) and/or (b, w). If there was the edge (a, b) it transforms to the loop (w, w). The resulting graph (after the merging operation) may contain multiple (parallel) edges between pairs of vertices and loops. Let us note that this operation decreases the number of vertices of graph by 1 but leaves the number of edges in the graph unchanged.

The merging operation can be informally described as a unity of two vertices of the graph into one with the natural transformation of the graph edges.

You may apply this operation consecutively and make the given graph to be a caterpillar. Write a program that will print the minimal number of merging operations required to make the given graph a caterpillar.

Input

The first line contains a pair of integers nm (1 ≤ n ≤ 2000;0 ≤ m ≤ 105), where n represents the number of vertices in the graph andm is the number of edges in it. Then the following m lines contain edge descriptions, one edge description per line. Every line contains a pair of integers ai, bi (1 ≤ ai, bi ≤ n;ai ≠ bi), ai, bi which represent the indices of the vertices connected by the edge. The vertices are numbered from 1 to n. In the given graph it will be no more than one edge between any pair of vertices. The given graph is not necessarily connected.

Output

Print the minimal required number of operations.

Examples
input
4 4
1 2
2 3
3 4
4 2
output
2
input
6 3
1 2
3 4
5 6
output
2
input
7 6
1 2
2 3
1 4
4 5
1 6
6 7
output
1

缩点

  目标状态是一棵树,可以有自环,不能有重边。tarjan缩点后,原图形成一片森林,对于每一棵树,它最多可以保留点数res=直径上的点数+其他叶子结点树。处理森林中的每一棵树,ans=total-res

_____

  刚开始没察觉到有森林,按照树处理,WA飞

  之后因为缩点后重边加多了,T飞

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt;
}e[];
int hd[mxn],mct=;
void add_edge(int u,int v){
e[++mct].v=v;e[mct].nxt=hd[u];hd[u]=mct;return;
}
int mp[mxn][mxn];
int n,m;
int dtime=;
int low[mxn],dfn[mxn];
int belone[mxn],cnt;
int st[mxn],top=;
void tarjan(int u,int fa){
dfn[u]=low[u]=++dtime;
st[++top]=u;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==fa)continue;
if(!dfn[v]){
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
cnt++;
int v=;
do{
v=st[top--];
belone[v]=cnt;
}while(v!=u);
}
return;
}
vector<int>eg[mxn];
int dis[mxn];
bool vis[mxn];int kct=;
int tg=;
void DFS(int u,int fa){
vis[u]=;
dis[u]=dis[fa]+;
if(dis[u]>dis[tg])tg=u;
for(int i=;i<eg[u].size();i++){
int v=eg[u][i];
if(v==fa)continue;
DFS(v,u);
}
return;
}
int pos1,pos2;
int outd[mxn];
int solve(){
if(cnt==)return n-;
int i,j;
for(i=;i<=n;i++){
for(j=hd[i];j;j=e[j].nxt){
int v=e[j].v;
if(mp[belone[i]][belone[v]])continue;
if(belone[i]!=belone[v]){
eg[belone[i]].push_back(belone[v]);
mp[belone[i]][belone[v]]=;//防止加重边
outd[belone[i]]++;
}
}
}
int res=;
for(i=;i<=cnt;i++)if(outd[i]==) res++;//叶子节点数
for(i=;i<=cnt;i++){
if(vis[i])continue;
kct++;//联通块计数
//
tg=;
DFS(i,);
pos1=tg;
tg=;
DFS(pos1,);
pos2=tg;
//求直径
if(dis[pos2]<)res++;
else res+=dis[pos2]-;
}
return n-res+kct-;
}
int main()
{
n=read();m=read();
int i,j,u,v;
for(i=;i<=m;i++){
u=read();v=read();
add_edge(u,v);
add_edge(v,u);
}
for(i=;i<=n;i++)
if(!dfn[i])tarjan(i,);
int ans=solve();
printf("%d\n",ans);
return ;
}

CodeForces 51F Caterpillar的更多相关文章

  1. Educational Codeforces Round 10 A. Gabriel and Caterpillar 模拟

    A. Gabriel and Caterpillar 题目连接: http://www.codeforces.com/contest/652/problem/A Description The 9-t ...

  2. codeforces 652A A. Gabriel and Caterpillar(水题)

    题目链接: A. Gabriel and Caterpillar time limit per test 1 second memory limit per test 256 megabytes in ...

  3. CodeForces 652A Gabriel and Caterpillar

    简单模拟. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> ...

  4. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  5. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  6. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  7. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  8. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  9. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

随机推荐

  1. ASP.NET MVC的Web Api的实练

    学习ASP.NET MVC一年多来,现在该学学Web Api了.API与ASP.NET MVC的Controller差不多.前者只是返回数据序列化和发送给客户端: 后者返回View或Render Vi ...

  2. Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  3. Ztree 随笔记

    Ztree方法是一个单体对象方法,假如一个页面有多个的话,每申明一个新对象前面的Ztree对象就要被覆盖. 解决:在生成tree控件的时候就要设置其控件ID,然后通过$.fn.zTree.getZTr ...

  4. 2014-10-28——iframe多层嵌套时获取元素总结

    同域: 父页面获取子页面元素: 注意:onload事件 jQuery获取:$("iframe").contents().find("holder")...... ...

  5. EMV内核使用中的常见问题

    EMV内核在使用上会由于调用不当引起的许多问题,本文旨在基于内核LOG(也就是与IC卡交互的指令LOG)的基础上,对一些常见问题作初步的分析与解答,方便不熟悉EMV规范的同学参考. 本文的前提是你已经 ...

  6. Redis简介-安装-入门

    前言 我们team马上要用Redis了. 所以先学习一下这东西. Redis大名很早以前就听过了,以前在的公司都没有用到. 现在有机会终于接触到了,果断学习起来. 什么是redis Redis是完全开 ...

  7. LINQ基础概述

    介绍LINQ基础之前,首说一下LINQ 的历史和LINQ是什么,然后说一下学习 LINQ要了解的东西和 LINQ基础语法   LINQ 的历史 从语言方面的进化 –委托 –匿名方法 –Lambda表达 ...

  8. c++ 指针(一)

    指针:是说指针名表示的是地址.是一个变量,存储的是值的地址,而不是值本身 *运算符被称为间接值或解除引用运算符也可以叫做取地址符 声明一个指针 int * p_data; * p_data的类型为in ...

  9. 你了解javascript中的function吗?(1)

    上一篇文章中 介绍了function在javascirpt作为一等公民所担任的重要责任,在不同 的上下文中它担任着不同的角色,在对象内部它可以是函数,同时又能充当名字空间,不仅如此所有的functio ...

  10. Crowdsourcing(众包)

    群众外包(英语:crowdsourcing)是互联网带来的新的生产组织形式.<连线>(Wired)杂志记者Jeff Howe于2006年发明的一个专业术语,用来描述一种新的商业模式,即企业 ...