组合数取模就是求的值,根据的取值范围不同,采取的方法也不一样。

下面,我们来看常见的两种取值情况(m、n在64位整数型范围内)

(1)  ,

此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模。

(2) ,   ,并且是素数

 本文针对该取值范围较大又不太大的情况(2)进行讨论。

这个问题可以使用Lucas定理,定理描述:

      

 其中

这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p.

 已知C(n, m) mod p = n!/(m!(n - m)!) mod p。当我们要求(a/b)mod p的值,且a很大,无法直接求得a/b的值时,我们可以转而使用乘法逆元k,将a乘上k再模p,即(a*k) mod p。 其结果与(a/b) mod p等价。

那么逆元是什么?

定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元(当p是1时,对于任意a,k都为1)

除法取模,这里要用到m!(n-m)!的逆元。

根据费马小定理

已知gcd(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 ;

下面附上Lucas定理的一种证明,见下图,参考冯志刚《初等数论》第37页。

题意:,其中,并且是素数。

代码:

#include<iostream>
//#include<algorithm>
using namespace std;
typedef long long ll;
int quick_power_mod(int a,int b,int m){//pow(a,b)%m
int result = ;
int base = a;
while(b>){
if(b & ==){
result = (result*base) % m;
}
base = (base*base) %m;
b>>=;
}
return result;
}
//计算组合数取模
ll comp(ll a, ll b, int p) {//composite num C(a,b)%p
if(a < b) return ;
if(a == b) return ;
if(b > a - b) b = a - b; int ans = , ca = , cb = ;
for(ll i = ; i < b; ++i) {
ca = (ca * (a - i))%p;
cb = (cb * (b - i))%p;
}
ans = (ca*quick_power_mod(cb, p - , p)) % p;
return ans;
}
ll lucas(ll n, ll m, ll p) {
ll ans = ; while(n&&m&&ans) {
ans = (ans*comp(n%p, m%p, p)) % p;//also can be recusive
n /= p;
m /= p;
}
return ans;
}
int main(){
ll m,n;
while(cin>>n>>m){
cout<<lucas(n,m,)<<endl;
}
return ;
}

上面的代码中用到了求幂取模操作来计算(m!(n-m)!)p-2 % p.下面解释幂取模算法:

反复平方法 求ab%m

通过研究指数b的二进制表示发现,对任意的整数b都可表示为:

  • n表示b的实际二进制位数
  • bi表示该位是0或1

因此,ab可表示为:

即用b的每一位表示a的每一项,而对任意相邻的两项存在平方关系,即:

因此我们构造下面的算法:

    • 把b转换为二进制表示,并从右至左扫描其每一位(从低到高)
    • 当扫描到第i位时,根据同余性质(2)计算a的第i项的模:

      base变量表示第i-1位时计算出的模,通过递归能很容易地确定所有位的模。
    • 如果第i位为1,即bi=1,则表示该位需要参与模运算,计算结果 result = (result*base) mod m;其中result为前i-1次的计算结果;若bi=0,则表示a的第i项为1,不必参与模运算
int quick_power_mod(int a,int b,int m){
int result = 1;
int base = a;
while(b>0){
if(b & 1==1){
result = (result*base) % m;
}
base = (base*base) %m;
b >>=1;
}
return result;
}

其中运用了两个同余性质:

同余性质1:ab≡bc (mod m)

同余性质2:  a≡c (mod m) => a2≡c2 (mod m)

理解要点:

  • base记录了a的每项的模,无论b在该位是0还是1,该结果都记录,目的是给后续位为1的项使用,计算方式是前一结果的平方取模,这也是反复平方法的由来
  • result只记录了位为1的项的模结果,该计算方式使用了同余性质1
  • 通过地把a使用二进制表示,并结合同余性质1,2,巧妙地化解了大数取模的运算。对1024位这样的大数,也最多进行1024次循环便可计算模值,性能非常快。

该方法是许多西方数学家努力的结果,通常也称为Montgomery算法。

(以上部分内容由网络搜集整理而来,不当之处,烦请不吝赐教)

组合数取模Lucas定理及快速幂取模的更多相关文章

  1. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  2. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  3. HDU-2817,同余定理+快速幂取模,水过~

    A sequence of numbers                                                             Time Limit: 2000/1 ...

  4. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  5. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  6. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  7. POJ3641-Pseudoprime numbers(快速幂取模)

    题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...

  8. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  9. HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模

    小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

随机推荐

  1. Codevs 1230 STL万岁。。 。

    题目描述 Description 给出n个正整数,然后有m个询问,每个询问一个整数,询问该整数是否在n个正整数中出现过. 输入描述 Input Description 第一行两个整数 n 和m. 第二 ...

  2. 傅盛:如何快慢“炼”金山?(转)

    原文地址:http://www.huxiu.com/article/16052/1.html 一直以来,金山都不是一家"大公司",从前不是,现在也不是. 能够掰着指头数完腾讯六大事 ...

  3. 阿里云修改默认的ssh端口

    Linux服务器的ssh服务支持远程访问服务器,默认的ssh端口号是22.为了安全起见,很多用户会将端口号由22改为其他的端口号.  如果遇到修改端口号并重启ssh服务后,新的端口号不生效,请参考以下 ...

  4. noi题库(noi.openjudge.cn) 1.9编程基础之顺序查找T06——T15

    T06 笨小猴 描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词 ...

  5. ASP.NET MVC 教程-MVC简介

    ASP.NET 是一个使用 HTML.CSS.JavaScript 和服务器脚本创建网页和网站的开发框架. ASP.NET 支持三种不同的开发模式:Web Pages(Web 页面).MVC(Mode ...

  6. Reverse Words in a String

    void reverseWords(string &s) { string res = "", tmp = ""; int l = s.length() ...

  7. 高性能JavaScript DOM编程

    我们知道,DOM是用于操作XML和HTML文档的应用程序接口,用脚本进行DOM操作的代价很昂贵.有个贴切的比喻,把DOM和JavaScript(这里指ECMScript)各自想象为一个岛屿,它们之间用 ...

  8. sdk墙内更新方法

    因为GFW有“保护”,我们能“安全”的遨游在中华互联局域网内.如何快速地更新sdk,一直是Android开发者的心病.网上流传着五花八门的方法,在这我记录一些我用过的切实可行的方法供给有需要的人.同时 ...

  9. 也来山寨一版Flappy Bird (js版)

    随着Flappy Bird的火爆,各种实现的版也不断出现,于是也手痒简单实现了一版. 其实本来只是想实现一下这只笨鸟的飞翔运动的,后来没忍住,就直接实现一个完整游戏了…… 因为这个游戏本身实现起来就没 ...

  10. 正则表达式语法(msdn)

    “正则表达式”描述在搜索文本正文时要匹配的一个或多个字符串.该表达式可用作一个将字符模式与要搜索的字符串相匹配的模板. 正则表达式包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为“元字符” ...