[问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供)
引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式:
\[|B|=\begin{vmatrix} 1 & x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ 1 & x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n-a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \\ 1 & y-a & y(y-a) & y^2(y-a) & \cdots & y^{n-1}(y-a) \end{vmatrix}.\]
将 \(|B|\) 中每一列按顺序乘以 \(a\) 加到后一列上,则有
\[|B|=\begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \cdots & x_n^n \\ 1 & y & y^2 & y^3 & \cdots & y^n \end{vmatrix}=\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(y-x_i).\cdots(1)\]
另一方面,将 \(|B|\) 按最后一行进行展开,有
\[|B|=(-1)^n\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(x_i-a)+(-1)^{n+1}|A|(y-a)+y(y-a)D,\cdots(2)\]
其中最后一行后 \(n-1\) 项的展开式提出公因子 \(y(y-a)\), 剩余部分记为 \(D\) (它具体是多少并不重要). 将 (1) 和 (2) 都看成是关于 \(y\) 的多项式,当 \(a\neq 0\) 时,比较其常数项 (换言之,令 \(y=0\) 即可),有
\[\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^nx_i=\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(x_i-a)+a|A|,\]
从而有
\[|A|=\frac{1}{a}\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\prod_{i=1}^nx_i-\prod_{i=1}^n(x_i-a)\Big).\]
当 \(a=0\) 时,比较一次项 \(y\) 前面的系数,有
\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big). \quad\Box\]
[问题2014A01] 解答三(升阶法,由董麒麟同学提供)的更多相关文章
- [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
- [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)
[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...
- [问题2014A02] 解答三(降阶公式法)
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- 製程能力介紹(SPC introduction) ─ 製程能力的三種表示法
製程能力的三種表示法 Ck: 準度指標 (accuracy) Ck=(M-X)/(T/2) Cp: 精度指標 (precision) Cp=T/(6σp) 規格為單邊時:Cp=(Tu-X)/3 ...
- 实战Excel Add-in的三种玩法
作者:陈希章 发表于 2017年11月26日 前言 这个系列文章应该有一阵子没有更新了,原因是一如既往的多,但是根本所在是我对于某些章节其实还没有完全想好怎么写,尤其是对于Office Add-in这 ...
- squid+stunnel+用户密码认证的三种玩法
没办法,应用越来越深入,就会越来越多要求. squid+stunnel+用户密码认证的场景至少以下三个,我会遇到. 1,标准玩法 在服务器上建一个SQUID,加密码认证,然后,其它人通过它上网.(不要 ...
- 《统计学习方法》笔记三 k近邻法
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...
随机推荐
- windows7远程桌面连接unbuntu12.04
参考:http://mawenjian.net/p/1221.html http://blog.csdn.net/chengfei112233/article/details/6623672 http ...
- js官网判断是否手机跳转到手机页面
<script src="http://siteapp.baidu.com/static/webappservice/uaredirect.js" type="te ...
- IOS第三天
第三天 ******** 九宫格代码的现实 @interface HMViewController () /** 应用程序列表 */ @property (nonatomic, strong) NSA ...
- objective-c基础教程——学习小结
objective-c基础教程——学习小结 提纲: 简介 与C语言相比要注意的地方 objective-c高级特性 开发工具介绍(cocoa 工具包的功能,框架,源文件组织:XCode使用介绍) ...
- 20145209&20145309信息安全系统设计基础实验报告 (4)
实验步骤 阅读和理解源代码 demo_read,demo_write 函数完成驱动的读写接口功能,do_write 函数实现将用户写入的数据逆序排列,通过读取函数读取转换后的数据.这里只是演示接口的实 ...
- java程序中调用Linux命令Windows命令
目前总结的方法: 调用Linux简单的命令行,设置文件夹权限755 String scriptDir = "/home/wenf"; String cmd = "chmo ...
- H5页面实现一个Audio标签加载多个音频文件,并进行播放和展示音频长度
最近微信项目中有需求,要将微信端发送过来的amr格式的语音文件,在项目中的页面上进行展示和播放,实现方式如下: 1.首先java后台收到微信端的消息推送的时候,使用 ffmpeg将amr格式的音频文件 ...
- IIS6(Win2003) 使用.net 4.0 后,默认文档失效解决方案。
IIS6(Win2003) 使用.net framework 4.0 后,默认文档失效解决方案. 用.net framework 4.0 开发的WEB项目,但放到iis6 中无法使用默认文档,状况如下 ...
- fmt-重新格式化段落
fmt供用户切分段落,使文本行数不要超出我们看到的屏幕范围. 如果电脑没有fmt(不是posix),需要安装coreutils包. 常用选项有两个: -s 切割较长的行,但不会将短行结合成较长的行. ...
- TCP_NODELAY
启用TCP_NODELAY的情况下: 客户端程序C连接到服务器程序S: C仅接受数据,S仅发送数据 S循环调用send发送长度很小的数据包比如:10字节; 在C上用任务管理器查看到C的上行流量大约是下 ...