[问题2014A01] 解答三(升阶法,由董麒麟同学提供)

引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式:

\[|B|=\begin{vmatrix} 1 & x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ 1 & x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n-a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \\ 1 & y-a & y(y-a) & y^2(y-a) & \cdots & y^{n-1}(y-a) \end{vmatrix}.\]

将 \(|B|\) 中每一列按顺序乘以 \(a\) 加到后一列上,则有

\[|B|=\begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & x_2^3 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \cdots & x_n^n \\ 1 & y & y^2 & y^3 & \cdots & y^n \end{vmatrix}=\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(y-x_i).\cdots(1)\]

另一方面,将 \(|B|\) 按最后一行进行展开,有

\[|B|=(-1)^n\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(x_i-a)+(-1)^{n+1}|A|(y-a)+y(y-a)D,\cdots(2)\]

其中最后一行后 \(n-1\) 项的展开式提出公因子 \(y(y-a)\), 剩余部分记为 \(D\) (它具体是多少并不重要). 将 (1) 和 (2) 都看成是关于 \(y\) 的多项式,当 \(a\neq 0\) 时,比较其常数项 (换言之,令 \(y=0\) 即可),有

\[\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^nx_i=\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(x_i-a)+a|A|,\]

从而有

\[|A|=\frac{1}{a}\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\prod_{i=1}^nx_i-\prod_{i=1}^n(x_i-a)\Big).\]

当 \(a=0\) 时,比较一次项 \(y\) 前面的系数,有

\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big). \quad\Box\]

[问题2014A01] 解答三(升阶法,由董麒麟同学提供)的更多相关文章

  1. [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

    [问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...

  2. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

  3. [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)

    [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...

  4. [问题2014A02] 解答三(降阶公式法)

    [问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...

  5. [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

    [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...

  6. 製程能力介紹(SPC introduction) ─ 製程能力的三種表示法

    製程能力的三種表示法 Ck: 準度指標 (accuracy)   Ck=(M-X)/(T/2) Cp: 精度指標 (precision)   Cp=T/(6σp) 規格為單邊時:Cp=(Tu-X)/3 ...

  7. 实战Excel Add-in的三种玩法

    作者:陈希章 发表于 2017年11月26日 前言 这个系列文章应该有一阵子没有更新了,原因是一如既往的多,但是根本所在是我对于某些章节其实还没有完全想好怎么写,尤其是对于Office Add-in这 ...

  8. squid+stunnel+用户密码认证的三种玩法

    没办法,应用越来越深入,就会越来越多要求. squid+stunnel+用户密码认证的场景至少以下三个,我会遇到. 1,标准玩法 在服务器上建一个SQUID,加密码认证,然后,其它人通过它上网.(不要 ...

  9. 《统计学习方法》笔记三 k近邻法

    本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...

随机推荐

  1. Web前端开发基础 第四课(盒代码模型)

    盒模型代码简写 还记得在讲盒模型时外边距(margin).内边距(padding)和边框(border)设置上下左右四个方向的边距是按照顺时针方向设置的:上右下左.具体应用在margin和paddin ...

  2. IOS第二天多线程-05NSOperationQueue 暂停,和恢复队列任务

    *********** #import "HMViewController.h" @interface HMViewController () <UITableViewDel ...

  3. Hibernate配置Log4J,很有参考价值的

    hibernate3 自带的默认的日志框架是slf4j,hibernate3的slf只是一个日志的接口,而hibernate3 自带默认的日志框架,在实际开发中很少有公司或者是项目中用到,这里记录一种 ...

  4. BLOB

    BLOB (binary large object),二进制大对象,是一个可以存储二进制文件的容器.在计算机中,BLOB常常是数据库中用来存储二进制文件的字段类型.BLOB是一个大文件,典型的BLOB ...

  5. HDU 1264 Counting Squares(线段树求面积的并)

    Counting Squares Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. 树莓派文档翻译 - 使用 - GPIO: 树莓派A和B

    https://www.raspberrypi.org/documentation/usage/gpio/README.md 2016/6/25 GPIO: 树莓派A和B ##介绍GPIO和在树莓派上 ...

  7. lua 可变参数

    问题:对可变参数传递的时候,采用如下方案: local cellData = {MsgText = msgText,Param = ...,CallBackFunc = callBackFunc,Ca ...

  8. 阿里云专有网络与弹性公网IP

    阿里云服务器经典网络和专有网络究竟有什么区别? 在用户提交订单购买阿里云ECS云服务器时,会面临怎样选择网络类型的烦恼,阿里云服务器定制购买时,网络类型里的经典网络和专有网络(VPC)是什么含义,该怎 ...

  9. Laravel-5.1 ---- 将mews captcha整合到项目中!

    经过摸索,终于能在laravel 5.1中应用验证码了. 因为英语渣五水平,所以几乎没搜索到什么有用的,于是考虑在github上搜索验证码包! 提示: github上的package中往往会有使用说明 ...

  10. 如何配置Eclipse+Tomcat 开发环境【转】

                                                                                                        ...