石子合并[DP-N3]
题目描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
--------------------------------------------------------
环形DP,前缀和,O(n3)即可
可以i降序j升序,也可以枚举长度
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=<<,INF=1e9;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[N],mx=,mn=INF;
int f[N][N],s[N],d[N][N];
void dp(){
for(int i=;i<=*n;i++)for(int j=;j<=*n;j++) d[i][j]=INF,d[i][i]=; for(int i=;i<=*n;i++) s[i]=s[i-]+a[i];
// for(int i=2*n-1;i>=1;i--)
// for(int j=i+1;j<=2*n&&j-i<n;j++)
// for(int k=i;k<j;k++){
// f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
// d[i][j]=min(d[i][j],d[i][k]+d[k+1][j]+s[j]-s[i-1]);
// }
for(int l=;l<n;l++)
for(int i=;i<=*n;i++){
int j=min(*n,i+l);
for(int k=i;k<j;k++){
f[i][j]=max(f[i][j],f[i][k]+f[k+][j]+s[j]-s[i-]);
d[i][j]=min(d[i][j],d[i][k]+d[k+][j]+s[j]-s[i-]);
}
} }
int main(int argc, const char * argv[]) {
n=read();
for(int i=;i<=n;i++) a[i]=read(),a[i+n]=a[i];
dp();
for(int i=;i<=n;i++) mx=max(f[i][i+n-],mx),mn=min(mn,d[i][i+n-]);
printf("%d\n%d",mn,mx);
return ;
}
石子合并[DP-N3]的更多相关文章
- 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]
题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...
- 石子合并DP
DP Time Limit:3000MS Memory Limit:131072KB 64bit IO Format:%lld & %llu Submit Status Pra ...
- 区间DP石子合并问题 & 四边形不等式优化
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- nyoj 737 石子合并(一)。区间dp
http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你 ...
- [NYIST737]石子合并(一)(区间dp)
题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 很经典的区间dp,发现没有写过题解.最近被hihocoder上几道比赛题难住了 ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- CSU 1592 石子合并 (经典题)【区间DP】
<题目链接> 题目大意: 现在有n堆石子,第i堆有ai个石子.现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数.求合并所有石子的最小代价. Input ...
随机推荐
- sublime安装
1.sublime下载安装 下载地址:http://www.sublimetext.com/3 选择合适版本下载 2.自定义快捷键 Ctrl+Shift+P调出命令面板 3.自定义设置 Ctrl+Sh ...
- 部署基于国际版Azure的SharePoint三层架构服务器场
前言 微软Azure国际版已经很普及了,这里没有用国内版(世纪互联),用的是国际版,当然是由于公司性质的缘故.这里一步步图文的方式,分享给大家创建Azure国际版的SharePoint三层架构的过程, ...
- VMware: XXX is still busy. Please wait until the operation is complete before closing
在使用vmware的过程中发现创建快照.恢复快照.管理快照等功能突然都变成灰色的,用不了.更觉得夸张的是仅仅剩下关闭虚机按钮是红色的.心想估计是虚机快照没处理完之类的问题导致的,于是想想关闭虚机重 ...
- Android中利用ViewHolder优化自定义Adapter的典型写法
利用ViewHolder优化自定义Adapter的典型写法 最近写Adapter写得多了,慢慢就熟悉了. 用ViewHolder,主要是进行一些性能优化,减少一些不必要的重复操作.(WXD同学教我的. ...
- Android 数据库的事务
什么是数据库的事务 事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit).事务通常由高级数据库操纵语言或编程语言书写的用户程序的执行所引起,并用形如begin ...
- 功能源代码(扇形进度)及Delegate运用在开放事件中、UINavigationController的封装
1:扇形进度视图及运用 首先先创建扇形的视图,传入进度值 #import <UIKit/UIKit.h> @interface LHProgressView : UIView @prope ...
- 【代码笔记】iOS-清除缓存有黑色背景(仿环球时报)
一,效果图. 二,代码. -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { UIAlertView * alterVi ...
- AFNetworking菊花转圈圈
注意,此圈圈是在左上角,特别小,不注意是看不到的 加载这个东西,要先引入头文件: AFNetworkActivityIndicatorManager.h 然后只要一句代码就可以实现,默认情况下AFN的 ...
- iOS 学习 - 13.微信分享链接、QQ 分享图片
准备工作---原文来自这个 首先要在微信开放平台申请 AppID 和 QQ ID(我第一天晚上申请的,第二天中午就通过了),接着导入 SDK,也就是3个 .h 和一个 .a 文件,详情见这里 如果你是 ...
- 心理控制方法——阅读Notes
1.自助式情感手术 祛除自我意象中的伤疤的要点 2. 你制造错误,但是错误不应造就你 你身上的缺点不是你的错 3. 不仅要原谅别人,也要原谅自己 4. 怨恨是一条通向失败的道路 5. 注意来 ...