参考:

http://blog.csdn.net/iamrichardwhite/article/details/51089199

一、神经网络的发展历史

五六十年代,提出感知机

八十年代,提出多层感知机,也就是神经网络,神经网络的层数直接决定了它对现实的刻画能力。

但是,多层神经网络带来了一些问题:

优化函数越来越容易陷入局部最优解

梯度消失现象更加严重

06年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层,神经网络有了真正意义上的深度,解开了深度学习DNN的热潮。近期出现的高速公路网络和深度残差学习进一步避免了梯度消失,达到了前所未有的100多层。

二、CNN的提出:卷积神经网络

全连接DNN中参数数量膨胀,不仅容易过拟合,还容易陷入局部最优。对此,提出CNN,通过卷积核作为中介,取代全连接来连接相邻的两层。同一个卷积核在所有图像内共享,图像通过卷积操作后仍然保留原来的位置关系。CNN模型限制了参数的个数并且挖掘了局部结构的这个特点。

三、RNN的提出:循环神经网络

全连接DNN无法对时间序列上的变化进行建模,但样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要,所以提出了RNN。

RNN中,神经元的输出可以再下一个时间戳直接作用到自身。但同时在时间轴上出现了梯度消失现象,引入长短时记忆单元LSTM,通过门的开关实现时间上的记忆功能,并防止梯度消失。

为了利用未来的信息,引入双向RNN、双向LSTM,同时利用历史和未来的信息。

四、CNN的典型代表:LeNet5

目标问题:手写体识别

输入层:32*32

C1:卷积层,6个特征图,每个和输入中的5*5的邻域相连,特征图大小28*28,每个卷及神经元参数数目:5*5+1=26,25个unit参数和1个bias参数,连接数目(5*5+1)*6*(28*28)=122,304个,因为参数共享,所以总的参数为(5*5+1)*6=156个。

S2:下采样层,6个14*14的特征图,每个图的每个单元和C1中的2*2邻域相连,不重叠。

C3:卷积层,16个卷积核,得到16个特征图,每个大小10*10,每个特征图的每个神经元和S2中的某三层中5*5邻域相连

S4:下采样层,由16个5*5大小的特征图构成,每个单元与C3中的2*2邻域相连接

C5:卷积层,120个神经单元,和C5全连接

F6:全连接层,84个单元,和C5全相连

输出层:欧式径向基函数

五、CNN反向传播的三种情况

卷积层后是一个pooling层:

mean-pooling:等值复制

max-pooling:在前向传播中记录最大值的位置

pooling层后是一个卷积层:

先对卷积层中对应的残差图进行扩充

扩充后的矩阵与对应的核进行卷积

矩阵求和

卷积层与前一层连接方式未定:

定义卷积核与前一层特征图之间的连接强度,可表示为另一个值的softmax函数,通过加入规则化项加强洗属性

六、著名实现

Alex Net

ZF Net

GoogLeNet

VGGNet

ResNet

七、过拟合和正则化

两种正则化方法:

penalizing weights:

l1-norm/l2-norm

weights/embedding

dropout:

删除部分节点

CNN & RNN 及一些常识知识(不断扩充中)的更多相关文章

  1. Sql Server 小知识不断扩充中

    1.  char.varchar.nvarchar 区别 char 定长字符数据长度8000字符,小于8000字符时以空格填充. varchar 变长字符数据最大长度8000,小于8000字符时不会以 ...

  2. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  3. [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...

  4. 使用Keras搭建cnn+rnn, BRNN,DRNN等模型

    Keras api 提前知道: BatchNormalization, 用来加快每次迭代中的训练速度 Normalize the activations of the previous layer a ...

  5. 深度学习-CNN+RNN笔记

    以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...

  6. 网站开发进阶(二十二)HTML UI知识汇总(更新中...)

    HTML知识汇总(更新中...) 1.<iframe> 标签 浏览器支持 所有浏览器都支持 <iframe> 标签. 定义和用法 iframe 元素会创建包含另外一个文档的内联 ...

  7. Java开发知识之Java中的Map结构

    Java开发知识之Java中的Map结构 一丶Map接口 Map没有实现Collection接口,提供的是Key 到Value的映射. Map中.不能包含相同的Key,每个Key只能映射一个Value ...

  8. Java开发知识之Java中的集合Set接口以及子类应用

    ---恢复内容开始--- Java开发知识之Java中的集合Set接口以及子类应用 一丶Set接口以及作用 在上一讲.我们熟悉了接口的实现图.以及自己各有的子类. List接口主要存储的数据是可以重复 ...

  9. Java开发知识之Java中的集合上List接口以及子类讲解.

    Java开发知识之Java中的集合类 一丶什么是集合类 如果你学习说数据结构,那么学习集合就很简单. 因为集合就是存储数据的结构. 例如 有链表结构 (list ) 还有 map结构.等等. 集合类就 ...

随机推荐

  1. 20145330《Java程序设计》课程总结

    20145330第八周<Java学习笔记> 每周读书笔记汇总 第一周学习总结 第二周学习总结 第三周学习总结 第四周学习总结 第五周学习总结 第六周学习总结 第七周学习总结 第八周学习总结 ...

  2. golang 自定义封包协议(转的)

    package protocol import ( "bytes" "encoding/binary" ) const ( ConstHeader = &quo ...

  3. asp.net 操作Excel大全

    asp.net 操作Excel大全 转:http://www.cnblogs.com/zhangchenliang/archive/2011/07/21/2112430.html 我们在做excel资 ...

  4. Equivalent Strings

    Equivalent Strings 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=84562#problem/E 题意: 给出 ...

  5. [LintCode] Swap Nodes in Pairs 成对交换节点

    Given a linked list, swap every two adjacent nodes and return its head.   Example Given 1->2-> ...

  6. CSS3初学篇章_1

    CSS 层叠样式表 不同的浏览器需要不同的前缀,虽然目前最新版本的浏览器的不需要,但为了向下兼容,前缀还是少不了. 前缀 浏览器  -webkit  chrome和safari  -moz  fire ...

  7. jquery回车执行某个事件

    这里用到的是在查询框中输入数据后直接回车直接查询. //回车执行查询事件(执行class='btn-query'的单击事件) $(document).keydown(function (event) ...

  8. window.open()&&window.showmodaldialog()

    open 打开一个新窗口,并装载URL指定的文档,或装载一个空白文档,如果没提供URL的话. 适用于 窗口 语法 window = object.open([URL[,name[,features[, ...

  9. js闭包初体验

      /* 闭包的定义:一个内部函数里变量作用域生命周期延续,直接访问一个函数里面的私有属性 闭包的作用:解决变量作用域延续的问题,同时解决全局变量冲突的问题 */ //1.定义内部函数,私有函数 fu ...

  10. angular+ckeditor最后上传的最后一张图片不会被添加(bug)

    做法一: angularJs+ckeditor 一.页面 <textarea ckeditor required name="topicContent" ng-model=& ...