Binary search tree
#ifndef __TREE_H
#define __TREE_H
#include <iostream> template<typename T> class TreeNode {
private:
T _data;
TreeNode<T>* _left;
TreeNode<T>* _right;
TreeNode<T>* _parent;
public:
TreeNode(T data,
TreeNode<T>* parent=,
TreeNode<T>* left=,
TreeNode<T>* right=)
:_data(data),_parent(parent),_left(left),_right(right) {}
void insertAtLeft(T data);
void insertAtRight(T data);
T& getData();
TreeNode<T>*& getLeft();
TreeNode<T>*& getRight();
TreeNode<T>*& getParent();
}; template<typename T>
T& TreeNode<T>::getData()
{
return _data;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getLeft()
{
return _left;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getRight()
{
return _right;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getParent()
{
return _parent;
} template<typename T>
void TreeNode<T>::insertAtLeft(T data)
{
_left = new TreeNode(data,this);
} template<typename T>
void TreeNode<T>::insertAtRight(T data)
{
_right = new TreeNode(data,this);
} template <typename T> class Tree{
private:
TreeNode<T>* _root;
int _size;
protected:
TreeNode<T>* findIn(TreeNode<T>* position,T element) const;
/*
* The last tmp argument is necessary,
* it is used here to changed the parent's _left/_right field
* to potint the node which is created
*/
TreeNode<T>* insertIn(TreeNode<T>* position,
T element,TreeNode<T>* tmp);
void travIn(TreeNode<T>* position);
void travPrev(TreeNode<T>* position);
void travPost(TreeNode<T>* position);
public:
Tree(T data)
:_root(new TreeNode<T> (data)),_size() { }
TreeNode<T>* find(T element) const;
TreeNode<T>* findMax() const;
TreeNode<T>* findMin() const;
TreeNode<T>* insert(T data);
void traversalIn();
void traversalPrev();
void traversalPost();
}; template<typename T>
void Tree<T>::travIn(TreeNode<T>* position)
{
if(!position)
return ;
travIn(position->getLeft());
std::cout << position->getData() << " ";
travIn(position->getRight());
} template<typename T>
void Tree<T>::travPrev(TreeNode<T>* position)
{
if(!position)
return ;
std::cout << position->getData() << " ";
travPrev(position->getLeft());
travPrev(position->getRight());
} template<typename T>
void Tree<T>::travPost(TreeNode<T>* position)
{
if(!position)
return ;
travPost(position->getLeft());
travPost(position->getRight());
std::cout << position->getData() << " ";
} template<typename T>
void Tree<T>::traversalPost()
{
travPost(_root);
std::cout << std::endl;
} template<typename T>
void Tree<T>::traversalPrev()
{
travPrev(_root);
std::cout << std::endl;
} template<typename T>
void Tree<T>::traversalIn()
{
travIn(_root);
std::cout << std::endl;
} template<typename T>
TreeNode<T>* Tree<T>::insertIn(TreeNode<T>* position,T data,
TreeNode<T>* tmp)
{
if(!position){
if(!tmp)
return new TreeNode<T>(data);
else
return (tmp->getData() >data ? tmp->getLeft():tmp->getRight())
= new TreeNode<T>(data,tmp);
}
if(data < position->getData())
insertIn(position->getLeft(),data,position);
else if(position->getData() < data)
insertIn(position->getRight(),data,position);
else
return position;
}
template<typename T>
TreeNode<T>* Tree<T>::insert(T data)
{
return insertIn(_root,data,);
} template<typename T>
TreeNode<T>* Tree<T>::findIn(TreeNode<T>* position,T data)const
{
while(position && position->getData() != data)
{
if(position->getData() > data)
position = position->getLeft();
else if(position->getData() < data)
position = position->getRight();
}
return position;
} template<typename T>
TreeNode<T>* Tree<T>::find(T data) const
{
return findIn(_root,data);
} template<typename T>
TreeNode<T>* Tree<T>::findMax() const
{
TreeNode<T>* tmp = _root;
while(tmp->getRight())
tmp = tmp->getRight();
return tmp;
} template<typename T>
TreeNode<T>* Tree<T>::findMin() const
{
TreeNode<T>* tmp = _root;
while(tmp->getLeft())
tmp = tmp->getLeft();
return tmp;
} #endif
二叉搜索树
Binary search tree的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
随机推荐
- 解决asp.net动态压缩
本来想写一个网站优化的系列(前端到后端的数据库,垂直优化到分布式,后面会补上),但没有时间(借口),今天就总结一下前几天优化网站的过程. 网站优化重点在于找出出现性能问题的地方,往往是解决方案很简单, ...
- 基于软件开源实践(FLOSS)论共产主义的可实现性
好久没发博客,来个狠的,我不信挨踢界有人比我更蛋疼来研究这个. 在马克思提出共产主义100多百年后,软件开发领域中出现了一种特别的生产方式:开源(FLOSS:Free/Libre and Open S ...
- Hexo部署到GitHub出现spawn ENOENT的解决办法
最近用Hexo博客部署到GitHub时出现了这如下的错误: Error: spawn ENOENT at errnoException (child_process.js:980:11) at Pro ...
- 获取设备的mac地址可靠的方法
参考自:http://www.open-open.com/lib/view/open1433406847322.html /** * 获取设备的mac地址 * * @param ac * @param ...
- 关于condition variable的理解
<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...
- Jquery全选单选功能
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm6.aspx. ...
- (20160604)开源第三方学习之CocoaLumberjack
CocoaLumberjack是一个很好用的日志打印工具,它可以帮助我们把工程中的日志信息打印到终端或者输出到文件中. 地址:https://github.com/CocoaLumberjack/Co ...
- objective-c系列-@Property&点语法
//解释 property后边的圆括号中的修饰词的含义: // nonatomic 非线程安全 非原子操作 特点是: 操作变量的效率高 // atomic ...
- GCD中的dispatch_group函数的详解
<一>引入dispatch_group函数的目的 在追加到dispatch_Queue中的多个处理全部结束后想要执行结束的处理,这种需求经常会在我们的程序中出现 (第一种情况)只使用一个S ...
- iOS集成ijkplayer视频直播框架,遇到的bug和坑...
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px "Helvetica Neue"; color: #555555 } p. ...