正题

题目链接:https://www.luogu.com.cn/problem/P7518


题目大意

给出\(n\)个点的一棵树,每个点上有不大于\(m\)的数字。

然后给出一个长度为\(c\)的各个位数不同的序列,每次询问一条路径上找到一个最大的\(k\)使得该序列的存在\(1\sim k\)的子序列。

\(1\leq n,q\leq 2\times 10^5,1\leq c\leq m\leq 5\times 10^4,1\leq w_i\leq m\)


解题思路

传统的思想,路径分为向上和向下的两部分。然后因为序列没有重复元素,所以相当于对于每一种存在于序列的宝石都有唯一的下一种宝石。

先考虑向上的,发现我们必须从一开始,所以其实我们可以考虑离线记录一个\(last\)数组,其中\(last_i\)表示到根节点的路径中上一个\(i\)类型的是什么。

然后每个节点维护一棵线段树,对于节点\(x\)若是第\(i\)种宝石,那么第\(j\)个位置就储存它往上走到按顺序第\(i\sim j\)颗宝石的最大深度,这个可以每次从\(last_{i+1}\)处继承一棵树然后修改一个位置就好了。

然后询问的时候就直接从\(last_1\)处的树上二分出我们需要深度就可以确定我们往上走的路径能走到哪里了。

考虑向下的路径,我们把它拆成一条反向向上的路径,但是起点不是固定的,所以我们可以直接二分答案,然后在\(last_{mid}\)处向上走到\(LCA\)时,查看是否上和下的路径的序列有重复部分就好了。

时间复杂度\(O(n\log^2 n)\)


code

考场代码比较凌乱

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cctype>
using namespace std;
const int N=2e5+10,T=18;
struct edge{
int to,next;
}a[N<<1];
int n,m,c,tot,w[N],p[N],ls[N],ans[N],lca[N];
int f[N][T+1],dep[N],las[N],rev[N],rt[N],up[N];
vector<int> vs[N],vt[N];
int read(){
int x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-f;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
struct SegTree{
int cnt,w[N*20],ls[N*20],rs[N*20];
int Change(int x,int L,int R,int pos,int val){
int now=++cnt;w[now]=max(w[x],val);
if(L==R){ls[now]=rs[now]=0;return now;}
int mid=(L+R)>>1;
if(pos<=mid)ls[now]=Change(ls[x],L,mid,pos,val),rs[now]=rs[x];
else rs[now]=Change(rs[x],mid+1,R,pos,val),ls[now]=ls[x];
return now;
}
int Ask(int x,int L,int R,int k){
if(!x)return 0;
if(L==R)return L;int mid=(L+R)>>1;
if(w[rs[x]]<k)return Ask(ls[x],L,mid,k);
return Ask(rs[x],mid+1,R,k);
}
int Bsk(int x,int L,int R,int k){
if(!x)return c+1;
if(L==R)return L;int mid=(L+R)>>1;
if(w[ls[x]]<k)return Bsk(rs[x],mid+1,R,k);
return Bsk(ls[x],L,mid,k);
}
}Tr;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs(int x,int fa){
f[x][0]=fa;dep[x]=dep[fa]+1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
dfs(y,x);
}
return;
}
int LCA(int x,int y){
if(dep[x]>dep[y])swap(x,y);
for(int i=T;i>=0;i--)
if(dep[f[y][i]]>=dep[x])y=f[y][i];
if(x==y)return x;
for(int i=T;i>=0;i--)
if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
void calc(int x,int fa){
int P=p[w[x]];
if(P){
rev[x]=las[P];las[P]=x;
rt[x]=Tr.Change(rt[las[P+1]],0,c,P,dep[x]);
}
for(int i=0;i<vs[x].size();i++){
int id=vs[x][i];
up[id]=Tr.Ask(rt[las[1]],0,c,dep[lca[id]]);
}
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
calc(y,x);
}
if(P)las[P]=rev[x];
return;
}
void solve(int x,int fa){
int P=p[w[x]];
if(P){
rev[x]=las[P];las[P]=x;
rt[x]=Tr.Change(rt[las[P-1]],1,c+1,P,dep[x]);
}
for(int i=0;i<vt[x].size();i++){
int id=vt[x][i],l=up[id]+1,r=c;
if(lca[id]==x){ans[id]=up[id];continue;}
while(l<=r){
int mid=(l+r)>>1;
int tmp=Tr.Bsk(rt[las[mid]],1,c+1,dep[lca[id]]+1);
if(tmp<=up[id]+1)l=mid+1;
else r=mid-1;
}
ans[id]=r;
}
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
solve(y,x);
}
if(P)las[P]=rev[x];
return;
}
int main()
{
n=read();m=read();c=read();
for(int i=1;i<=c;i++){
int x=read();p[x]=i;
}
for(int i=1;i<=n;i++)w[i]=read();
for(int i=1;i<n;i++){
int x=read(),y=read();
addl(x,y);addl(y,x);
}
dfs(1,0);
for(int j=1;j<=T;j++)
for(int i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1];
m=read();
for(int i=1;i<=m;i++){
int s=read(),t=read();
lca[i]=LCA(s,t);
vs[s].push_back(i);
vt[t].push_back(i);
}
calc(1,1);Tr.cnt=0;
solve(1,1);
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}
/*
7 3 3
2 3 1
2 1 3 3 2 1 3
1 2
2 3
1 4
4 5
4 6
6 7
5
3 5
1 3
7 3
5 7
7 5
*/

P7518-[省选联考2021A/B卷]宝石【主席树,二分】的更多相关文章

  1. P7514-[省选联考2021A/B卷]卡牌游戏【贪心】

    正题 题目链接:https://www.luogu.com.cn/problem/P7514 题目大意 给出\(n\)个卡牌有\(a_i/b_i\),开始都是\(a_i\)朝上,将不超过\(m\)张卡 ...

  2. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  3. [省选联考 2021 A 卷] 矩阵游戏

    很巧妙的一个构造. 我是没有想到的. 自己的思维能力可能还是不足. 考虑先满足\(b\)对\(a\)的限制,把\(a\)的第一行和第一列设\(0\),推出这个\(a\). 接下来考虑对这个\(a\), ...

  4. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

  5. luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

    luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...

  6. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  7. [四校联考P3] 区间颜色众数 (主席树)

    主席树 Description 给定一个长度为 N 颜色序列A,有M个询问:每次询问一个区间里是否有一种颜色的数量超过了区间的一半,并指出是哪种颜色. Input 输入文件第一行有两个整数:N和C 输 ...

  8. P7515-[省选联考 2021A卷]矩阵游戏【差分约束】

    正题 题目链接:https://www.luogu.com.cn/problem/P7515 题目大意 有一个\(n*m\)的矩形\(A\),然后给出一个\((n-1)*(m-1)\)的矩形\(B\) ...

  9. P7518 & 省选联考2021 宝石

    这是一篇极其简单连像我这样省三参加不了省选的蒟蒻都能看懂的题解 前置知识: 倍增LCA  二分 栈 题意 PS:这是一篇完全面向初学者的题解,会非常细,大佬请无视 题目传送门 没有思路的时候, 我们往 ...

随机推荐

  1. 程序员必须知道的数据结构:HashMap 与 LinkedHashMap

    为什么要说 HashMap 与 LinkedHashMap?第一:这两种数据结构是 Java Coder 中经常使用的数据结构.第二:这两种结构是最合适的能说明链表与数组的结构关系.在开始之前首先必须 ...

  2. CLR、CLI、CTS、CLS的关系

    网站:https://blog.csdn.net/dodream/article/details/4719578 ·CLR(公共语言运行库)是一个CLI的实现,包含了.NET运行引擎和符合CLI的类库 ...

  3. 1 TortoiseGit简介

    tortoiseGit是一个开放的git版本控制系统的源客户端,支持Winxp/vista/win7.该软件功能和git一样 不同的是:git是命令行操作模式,tortoiseGit界面化操作模式,不 ...

  4. 多台服务器共享session问题(2)

    多台服务器共享session问题  转载自:https://www.cnblogs.com/lingshao/p/5580287.html 在现在的大型网站中,如何实现多台服务器中的session数据 ...

  5. OJ 注意事项

    1,检查指针是否有效,即是否为NULL 1 void OutputMaxAndMin(int * pInputInteger, int InputNum, int * pMaxValue, int * ...

  6. 判断宽度的js

    <script language="javascript" type="text/javascript">/*将获取的值存到变量里*/width_s ...

  7. rasa 如何写一个故事

    设计故事 在设计故事时,需要考虑两组对话交互:快乐路径和不快乐路径.快乐路径描述用户何时按照您的预期遵循对话流程,并在出现提示时始终提供必要的信息.然而,用户经常会因为问题.闲聊或其他问题而偏离愉快的 ...

  8. MySQL高可用主从复制新增slave

    原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 基础环境 二 新增slave2方案 2.1 方案1:-复制主库 2.2 方案2 ...

  9. 性能测试工具JMeter 基础(九)—— 测试元件: 逻辑控制器之交替控制器

    交替控制器:根据被控制器触发执行次数,去依次执行控制器下的子节点(逻辑控制器.采样器),可以由线程组的线程数.循环次数.逻辑控制器触发. 交替控制器(lnterleave Controller) 简单 ...

  10. Linux学习笔记--终端命令

    ~ 表示用户目录路径 ls   显示当前目录下的文件或目录 -l 列出文件纤细信息l(list) -a 列出当前目录下所有文件及目录, 包含隐藏的a(all) mkdir   创建目录 -p 创建目录 ...