Codeforces 题面传送门 & 洛谷题面传送门

一道个人感觉挺有意思的交互题,本人一开始想了个奇奇怪怪的做法,还以为卡不进去,结果发现竟然过了,而且还是正解(

首先看到这类题目可以考虑每次删掉一个质数的倍数,即对某个 \(pr_i\) 执行 B 操作,然后对 \(pr_i\) 进行 A 询问,根据询问得到的值是否等于理论上删去这些数后 \(pr_i\) 的倍数个数来判断 \(pr_i\) 是否是 \(x\) 的因数,如果是那么就枚举 \(pr_i\) 的 \(2,3,4,\cdots\) 次方,再对这些次方执行 A 询问,以此来判断 \(x\) 质因数分解式中 \(pr_i\) 的次数。

算下询问次数,询问 \(pr_i\) 的 \(2,3,4,\cdots\) 的次数显然与 \(x\) 质因数分解式中 \(x\) 每个质因数的次数之和有关,是 \(\log\) 级别的,最多只有 \(20\) 可以忽略,瓶颈在于每个质因数都要进行两次操作,打表可以发现 \(10^5\) 以内质因数个数刚好比 \(10^4\) 小个几百,因此 \(2\pi(n)\) 是 \(2\times 10^4\) 级别的,过不去。

考虑优化,很明显对于 B 操作而言,我们是可以在操作的同时问出 \(x\) 的倍数的,而刚刚的解法中并没有利用这个性质,因此考虑从这个性质入手解题,我们还是从小到大枚举质因子,只不过与刚才不同的一点是,我们不每进行一次 B 询问都跟一个 A 询问,我们只做 B 询问,那么对于大多数质数,每次 B 询问时也可以根据结果知道该质数是否是 \(x\) 的因子,只有一个例外——那就是 \(x\) 的最小质因子,因此接下来我们只用找到 \(x\) 的最小质因子及它的次数即可,这也是本题的难点所在,我就在这个地方卡了 20+min 后想到了这个解法。

注意到 A 操作起始下标是可以从 \(1\) 开始的,而通过 \(A\ 1\) 我们则可以知道刚才询问的数中是否出现了 \(x\) 的质因子,因此我们考虑根分,每 100 次 B 询问来一次 A 1,那么我们可以把质因子按大小分为 \(\lceil\dfrac{\pi(n)}{100}\rceil\),显然最小质因子就在最后一个 A 1 等于剩余数个数与第一个 A 1 不等于剩余数个数的位置之间,中间部分就暴力枚举质因子然后用 A 质因子判断即可,这样总操作次数为 \(\pi(n)+100+\lceil\dfrac{\pi(n)}{100}\rceil+\log n\),实测询问次数最多 9700+ 次,刚好卡过。

const int MAXN=1e5;
int n,pr[MAXN/5+5],prcnt=0;
bool vis[MAXN+5],is[MAXN+5],has[MAXN+5];
vector<int> fac[MAXN+5];
int cnt[MAXN+5];
void sieve(){
for(int i=2;i<=n;i++){
if(!vis[i]) pr[++prcnt]=i;
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0) break;
}
}
for(int i=1;i<=n;i++) cnt[i]=n/i;
for(int i=1;i<=prcnt;i++) for(ll j=pr[i];j<=n;j*=pr[i]) is[j]=1;
for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i) fac[j].pb(i);
}
void del(int x){for(int y:fac[x]) cnt[y]--;has[x]=1;}
void del_mul(int x){for(int i=x;i<=n;i+=x) if(!has[i]) del(i);}
int qr1(int x){printf("A %d\n",x);fflush(stdout);int res;scanf("%d",&res);return res;}
int qr2(int x){printf("B %d\n",x);fflush(stdout);int res;scanf("%d",&res);return res;}
int main(){
scanf("%d",&n);sieve();
int cur=1,mn=prcnt,cc=0,fst_blk=0;
for(int i=1;i<=prcnt;i++){
int t=qr2(pr[i]);
if(t!=cnt[pr[i]]){
if(cur==1) mn=i;del_mul(pr[i]);
cur*=pr[i];
for(ll x=1ll*pr[i]*pr[i];x<=n;x*=pr[i]){
int num=qr1(x);//printf("%d %d\n",x,cnt[x]);
if(num==cnt[x]) break;cur*=pr[i];
}
} else del_mul(pr[i]);
++cc;
if(cc==100&&!fst_blk){
cc=0;int x=qr1(1);
if(x!=cnt[1]) fst_blk=i;
}
} if(!fst_blk){int x=qr1(1);if(x!=cnt[1]) fst_blk=prcnt;}
for(int j=(fst_blk-1)/100*100+1;j<=min(fst_blk,mn);j++){
int x=qr1(pr[j]);
if(x!=cnt[pr[j]]){
cur*=pr[j];
for(ll k=1ll*pr[j]*pr[j];k<=n;k*=pr[j]){
int num=qr1(k);//printf("%d %d\n",x,cnt[x]);
if(num==cnt[k]) break;cur*=pr[j];
} break;
}
}
printf("C %d\n",cur);fflush(stdout);
return 0;
}

Codeforces 1406E - Deleting Numbers(根分+数论)的更多相关文章

  1. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  2. Codeforces 1446D2 - Frequency Problem (Hard Version)(根分)

    Codeforces 题面传送门 & 洛谷题面传送门 人菜结论题做不动/kk 首先考虑此题一个非常关键的结论:我们设整个数列的众数为 \(G\),那么在最优子段中,\(G\) 一定是该子段的众 ...

  3. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  4. Codeforces 878 E. Numbers on the blackboard

    Codeforces 878 E. Numbers on the blackboard 解题思路 有一种最优策略是每次选择最后面一个大于等于 \(0\) 的元素进行合并,这样做完以后相当于给这个元素乘 ...

  5. PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  6. PAT 甲级 1023 Have Fun with Numbers (20 分)(permutation是全排列题目没读懂)

    1023 Have Fun with Numbers (20 分)   Notice that the number 123456789 is a 9-digit number consisting ...

  7. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  8. 1069 The Black Hole of Numbers (20分)

    1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...

  9. 1023 Have Fun with Numbers (20 分)

    1023 Have Fun with Numbers (20 分)   Notice that the number 123456789 is a 9-digit number consisting ...

随机推荐

  1. 吴恩达课后习题第二课第三周:TensorFlow Introduction

    目录 第二课第三周:TensorFlow Introduction Introduction to TensorFlow 1 - Packages 1.1 - Checking TensorFlow ...

  2. MIPI的走线阻抗

    MIPI的走线阻抗100欧的要求是根据LVDS(Low Voltage Differential Signaling)电平定义的. LVDS差分信号PN两线最大幅度是350mV,内部一个恒流源电流是3 ...

  3. hdu 2200 Eddy's AC难题(简单数学。。)

    题意: N个人,每个人AC的题数都不一样. Eddy想从中选出一部分人(或者全部)分成两组.必须满足第一组中的最小AC数大于第二组中的最大AC数. 问共有多少种不同的选择方案. 思路: 简单数学.. ...

  4. zabbix web管理页面 中文乱码问题

    1.在自己电脑上找下图文件,C:\Windows\Fonts 2.上传到 /usr/share/zabbix/assets/fonts/ 目录下 可以看到 graphfont.ttf 是 /etc/a ...

  5. "迷途"的野指针,都快找不着北了

    指针,C语言开发者表示很淦,指针的使用,很多人表示不敢直面ta,不像Java一样,有垃圾自动回收功能,我们不用担心那么多内存泄漏等问题,那C语言里边呢,指针又分为了"野指针",&q ...

  6. .NET 生态系统的蜕变之 .NET 6云原生

    云原生的英文名是cloud native,native 就是土著的意思,也就是土著对当地的环境是非常适应的,在云的环境和传统的数据中心是非常不同的,云原生就是要用的云的技术来构建应用, 利用云的技术来 ...

  7. springboot如何通过apollo动态去注册dubbo服务

    参考相关文章: apollo官方文档:  https://dubbo.apache.org/zh/docs/v2.7/user/configuration/configuration-load-pro ...

  8. idea如何在终端使用git并解决终端中文乱码

    idea使用git终端 在idea设置中 找到Settings-Tools-Terminal-Shell path,替换为git安装目录下的bin/bash.exe 解决中文乱码 在git安装目录下找 ...

  9. uni-app app端设置全屏背景色

    设置page:{样式},博主调试的时候在app端不起作用,设置配置文件的backgroundColor也没有用,所以博主就使用了一个稍微比较偏的办法解决了,没有用获取设备信息的api来实现 具体操作就 ...

  10. RDD的详解、创建及其操作

    RDD的详解 RDD:弹性分布式数据集,是Spark中最基本的数据抽象,用来表示分布式集合,支持分布式操作! RDD的创建 RDD中的数据可以来源于2个地方:本地集合或外部数据源 RDD操作 分类 转 ...