第一道Ynoi,纪念一下。

众所周知,Ynoi会进行惨无人道的卡常操作,所以我们可以使用暴力去做Ynoi。

于是乎,我们考虑分块+暴力。

对于操作2,不难发现是道裸的分块,可以抄P3372的代码。

对于操作1,我们秉持暴力的思想,直接暴力修改。

然后就AC了。

但是如果每个操作都是1 1 1 1,那么最坏复杂度是 \(O(n^2)\) ...

可是毕竟数据不是lxl造的,随便暴力。

卡常都不用卡。

复杂度什么的全部不管。

好像线段树和树状数组被卡掉了?

分块能过就行。

最后贴一下分块的代码。

#include<stdio.h>
#include<math.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io; ll n, m, a[200010], belong[200010];
ll s, c, st[50010], ed[50010];
ll sum[50010];
void pretreat() {
s = (int)sqrt(n);
for(ri i = 1; i <= n; i += s) {
st[++c] = i;
ed[c] = min(i + s - 1, n);
} /*做出每个块的左右端点*/
rep(i, 1, c) rep(j, st[i], ed[i]) {
belong[j] = i;
sum[i] += a[j]; /*预处理块内各数之和*/
}
/*记录每一个数在哪一块*/
}
il void single_upd(ll x, ll k) {
a[x] += k; /*单点增加*/
sum[belong[x]] += k;
}
il void range_upd(ll x, ll y, ll k) {
for(ll i = y; i <= n; i += x) single_upd(i, k);
}
il ll range_query(ll x, ll y) {
ll l = belong[x], r = belong[y], ans = 0;
if(l == r) {
rep(i, x, y) ans += a[i];
return ans % (int)(1e9 + 7);
}
rep(i, x, ed[l]) ans += a[i];
/*左边不完整块的求和*/
rep(i, st[r], y) ans += a[i];
rep(i, l + 1, r - 1) ans += sum[i];
return ans % (int)(1e9 + 7);
}
int main() {
read(n), read(m);
rep(i, 1, n) read(a[i]);
pretreat();
rep(i, 1, m) {
ri opt, l, r, c;
read(opt), read(l), read(r);
if(opt == 1) read(c), range_upd(l, r, c);
else print(range_query(l, r)), push('\n');
}
return 0;
}

[Ynoi2011]初始化 题解的更多相关文章

  1. 洛谷P5309 Ynoi 2011 初始化 题解

    题面. 我也想过根号分治,但是题目刷得少,数组不敢开,所以还是看题解做的. 这道题目要用到根号分治的思想,可以看看这道题目和我的题解. 题目要求处理一个数组a,支持如下操作. 对一个整数x,对数组长度 ...

  2. 从 洛谷P5309 Ynoi2011 初始化 看卡常

    一般情况下,程序运行消耗时间主要与时间复杂度有关,超时与否取决于算法是否正确. 但对于某些题目,时间复杂度正确的程序也无法通过,这时我们就需要卡常数,即通过优化一些操作的常数因子减少时间消耗. 比如这 ...

  3. 题解 洛谷 P5311 【[Ynoi2011]成都七中】

    每次询问是关于 \(x\) 所在的连通块,所以考虑用点分树来解决本题. 点分树上每个节点所对应的子树,都是原树中的一个连通块.询问中给定 \(x\) 和区间 \([l,r]\),其就已经确定了原树的一 ...

  4. poj2391 Ombrophobic Bovines 题解

    http://poj.org/problem?id=2391 floyd+网络流+二分 题意:有一个有向图,里面每个点有ai头牛,快下雨了牛要躲进雨棚里,每个点有bi个雨棚,每个雨棚只能躲1头牛.牛可 ...

  5. LeetCode OJ 题解

    博客搬至blog.csgrandeur.com,cnblogs不再更新. 新的题解会更新在新博客:http://blog.csgrandeur.com/2014/01/15/LeetCode-OJ-S ...

  6. 2017 google Round D APAC Test 题解

    首先说明一下:我只是用暴力过了4道题的小数据,就是简单的枚举,大数据都不会做!下面的题解,是我从网上搜到的解答以及查看排行榜上大神的答案得出来的. 首先贴一下主要的题解来源:http://codefo ...

  7. HDU2094(产生冠军)题解

    HDU2094(产生冠军)题解 以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 根据给定现有比赛结果推断分析冠军.(这描述...我建议还是看题吧,题不长) [题目分析] 给出的 ...

  8. Java JVM 类的连接与初始化 [ 转载 ]

    Java类的连接与初始化 (及2013阿里初始化笔试题解析)  转自http://www.cnblogs.com/iceAeterNa/p/4876747.html         Java虚拟机通过 ...

  9. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

随机推荐

  1. Linux中使用QT读取并显示温度传感器数值

    环境: Ubuntu 16.04 64 bit QT5.13.1/QT5.12 原理 对于Linux来说一切都是文件,温度传感器也是个文件,如果要获取某个温度传感器的数值,可以读取相应的文件,Linu ...

  2. gRPC(2):四种基本通信模式

    在 gRPC(1):入门及简单使用(go) 中,我们实现了一个简单的 gRPC 应用程序,其中双方通信是简单的请求-响应模式,没发出一个请求都会得到一个响应,然而,借助 gRPC 可以实现不同的通信模 ...

  3. Mysql在线DDL

    1.  Mysql各版本DDL方式 1.1 MysqlDDL演进 当mysql某个业务表上有未提交的活动事务的时候,你去执行在线DDL,这相当危险,直接会被卡住,show processlist里面会 ...

  4. Java基础之(一)——从synchronized优化看Java锁概念

    一.悲观锁和乐观锁概念 悲观锁和乐观锁是一种广义的锁概念,Java中没有哪个Lock实现类就叫PessimisticLock或OptimisticLock,而是在数据并发情况下的两种不同处理策略. 针 ...

  5. POJ 2065 SETI 高斯消元解线性同余方程

    题意: 给出mod的大小,以及一个不大于70长度的字符串.每个字符代表一个数字,且为矩阵的增广列.系数矩阵如下 1^0 * a0 + 1^1 * a1 + ... + 1^(n-1) * an-1 = ...

  6. 适合企业的CRM系统选型法则?

    在市场竞争激烈的今天,企业需要找到一款好用的企业CRM系统来帮助维护客户关系,同时也能够帮助企业进行销售管理.营销管理,CRM可以说是当代企业管理的最强工具之一.那么适合企业的CRM客户管理系统要如何 ...

  7. Java实验项目三——递归实现字符串查找和替换操作

    Program:按照下面要求实现字符串的操作: (1)设计一个提供下面字符串操作的类 1)编写一个方法,查找在一个字符串中指定字符串出现的次数. 2)编写一个方法,参数(母字符串,目标字符串,替换字符 ...

  8. php弱类型比较

    前言:今天XCTF题目中出现了弱类型比较,特别过来记录一下, 0x01: == 是弱类型比较,两个不同类型比较时,会自动转换成相同类型后再比较值 ===是强比较,需要比较值和类型 0x02: 看下图案 ...

  9. 全彩LED灯

    1.全彩 LED 灯,实质上是一种把红.绿.蓝单色发光体集成到小面积区域中的 LED 灯,控制时对这三种颜色的灯管输出不同的光照强度,即可混合得到不同的颜色,其混色原理与光的三原色混合原理一致.例如, ...

  10. Docker 基础备忘录

    Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机).bare metal. ...