[atAGC045D]Lamps and Buttons
由于$p_{i}$是随机的,不断选择最小的、未被操作过的$i$并处理其所在的环一定是最优的,而这样与已知$p_{i}$的区别是,当选择了一个$i=p_{i}$,那么必然失败(而已知$p_{i}$时不会去选择)
考虑令$t=\min_{p_{i}=i或i=A+1}i$,我们只能操作到$t-1$为止,因此即要求:
1.$\forall 1\le i<t,i\ne p_{i}$,同时若$t\le A$,则$p_{t}=t$
2.$\forall A<i\le n$,满足$\exists 1\le j<t,i和j在同一个环中$
对于$1\le i<t,i=p_{i}$的$i$数量容斥,即枚举这个数量$j$,之后这$j$个位置以及$t$(若$t\le A$)可以看作删除(这里有$(-1)^{j}{t-1\choose j}$的系数)
通过容斥,我们就去除了第一个条件(注意:容斥仅仅强制了这$j$个位置满足$p_{i}=i$,对其余位置没有限制),再整理一下,可以看作以下问题——
令$x=t-1-j$(初始是亮的且可以操作)、$y=\max(A-t,0)$(初始是亮的但不能操作)和$z=n-A$(初始不亮),统计$x+y+z$阶的排列:$\forall i\in z$,满足$\exists j\in x,i和j在同一个环中$
(上面的$\in x$指属于这$x$个点中的一个,$y$和$z$类似)
将排列看作一张有向图,每一次插入$i$,有两种可能:
新建一条边$(i,i)$或选择一条边$(x,y)$,删除该边并建立$(x,i)$和$(i,y)$($x$可以等于$y$)
归纳可得这样可以得到所有排列(所对应的有向图),同时我们考虑依次插入$x+y+z$个数,对于前$x$个数是任意的,再填$z$个数,但都只能在之前插入而不能选择自环,最后$y$个数依旧任意
(如果先填$y$个数,那么$z$不能选择仅由$y$组成的环,因此不正确)
根据乘法原理将这些乘起来,即$\frac{x(x+y+z)!}{x+z}$,综合前面答案即为$\sum_{t=1}^{A+1}\sum_{j=0}^{t-1}(-1)^{j}{t-1\choose j}\frac{x(x+y+z)!}{x+z}$,预处理阶乘和逆元就可以做到$o(n+A^{2})$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define mod 1000000007
5 int n,a,ans,fac[N],inv[N],inv_fac[N];
6 int c(int n,int m){
7 return 1LL*fac[n]*inv_fac[m]%mod*inv_fac[n-m]%mod;
8 }
9 int calc(int x,int y,int z){
10 return 1LL*fac[x+y+z]*x%mod*inv[x+z]%mod;
11 }
12 int main(){
13 scanf("%d%d",&n,&a);
14 fac[0]=inv[0]=inv[1]=inv_fac[0]=1;
15 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
16 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
17 for(int i=1;i<N-4;i++)inv_fac[i]=1LL*inv_fac[i-1]*inv[i]%mod;
18 for(int i=1;i<=a+1;i++)
19 for(int j=0;j<i;j++){
20 int s=1LL*c(i-1,j)*calc(i-1-j,max(a-i,0),n-a)%mod;
21 if (j&1)s=mod-s;
22 ans=(ans+s)%mod;
23 }
24 printf("%d",ans);
25 }
[atAGC045D]Lamps and Buttons的更多相关文章
- poj 1176 Party Lamps
http://poj.org/problem?id=1176 Party Lamps Time Limit: 1000MS Memory Limit: 10000K Total Submissio ...
- party lamps(dfs优化+规律枚举)
Problem description: To brighten up the gala dinner of the IOI'98 we have a set of N coloured lamps ...
- Android 添加ActionBar Buttons
一.在res/menu文件夹下创建Xml文件 跟标签为menu,设置item <?xml version="1.0" encoding="utf-8"?& ...
- Lesson 6 Percy Buttons
Text I have just moved to a house in Bridge Street. Yesterday a bagger knocked at my door. He asked ...
- BUTTONS V. 2.0.0——CSS按钮库
BUTTONS-V2-CSS库样式职责 CSS库样式职责分离优点 模块样式命名更清晰化 易于维护.扩展性强 动画效果——修改样式后有过度效果,默认样式 源码如下 <!DOCTYPE html&g ...
- CodeForces 520B Two Buttons(用BFS)
Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Codeforces Round B. Buttons
Manao is trying to open a rather challenging lock. The lock has n buttons on it and to open it, you ...
- AngularJs的UI组件ui-Bootstrap分享(七)——Buttons和Dropdown
在ui-Bootstrap中,Buttons控件和Dropdown控件与form表单中的按钮和下拉框名字很像,但实际上这两个控件有新的含义. 先说Buttons,它是一组按钮,用来实现form表单中的 ...
- 使用虚拟按钮(Ghost Buttons)的25个网站
2014年已经过去大半年了,我们看到网页设计领域出现新的设计趋势. 虚拟按钮(Ghost Buttons)是指具备基本的按钮形状的透明按钮,但有细实线的边框.有些虚拟钮是互动的,点击之后按钮可能会成为 ...
随机推荐
- 15-ThreadLocalRandom类剖析
ThraedLocalRandom类是JDK7在JUC包下新增的随机数生成器,它弥补了Random类在多线程下的缺陷. Random类及其缺陷 下面看一下java.util.Random的使用方法. ...
- 关于C、Java、Python程序运行耗时及内存用量
最近没有刷题,而是在PTA找几个题目寻找有关程序输入流问题以及各种语言在运行时对计算机消耗内存的问题, 以免很多同学解题的时候发现自己做的对但是出现运行超时的问题:针对运行内存,肯定用C/C++的同学 ...
- CAM对象样式表
CAM对象样式表 121 160 UF_machining_task_type UF_mach_order_task_subtype 112 UF_machining_null_grp_type 无 ...
- 从源码层面深度剖析Redisson实现分布式锁的原理(全程干货,注意收藏)
Redis实现分布式锁的原理 前面讲了Redis在实际业务场景中的应用,那么下面再来了解一下Redisson功能性场景的应用,也就是大家经常使用的分布式锁的实现场景. 引入redisson依赖 < ...
- 改善深层神经网络-week1编程题(Initializaion)
Initialization 如何选择初始化方式,不同的初始化会导致不同的结果 好的初始化方式: 加速梯度下降的收敛(Speed up the convergence of gradient desc ...
- 改善深层神经网络-week3编程题(Tensorflow 实现手势识别 )
TensorFlow Tutorial Initialize variables Start your own session Train algorithms Implement a Neural ...
- Beta阶段第七次会议
Beta阶段第七次会议 时间:2020.5.23 完成工作 姓名 工作 难度 完成度 ltx 1.修改小程序页面无法加载bug2.修改条件语句,使得页面能够正常显示 中 90% xyq 1.根据api ...
- 2021.10.9考试总结[NOIP模拟72]
T1出了个大阴间题 状压\(DP\),记当前状态的代价和与方案数.状态\(\Theta(2^nn)\),转移\(\Theta(n)\). 发现每个状态的最大值只会是所选集合的\(max\)或加一.于是 ...
- C++ Boost signal2信号/插槽
#include "stdafx.h" #include "boost/signals2.hpp" #include "boost/bind.hpp& ...
- sonar-project.propertie分析参数
SonarScanner 是当您的构建系统没有特定扫描仪时使用的扫描仪. 配置您的项目 在你的项目根目录中创建一个名为的配置文件 sonar-project.properties # must be ...