hdu 4521 小明序列(线段树,DP思想)
题意:
①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ;
②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ;
③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ;
④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
例如:序列S={2,1,3,4} ,其中d=1;
可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
思路:
DP的思想,但是只能想到N^2的算法。嘿嘿正好题目有说(0<=Ai<=10^5),那就是了,用线段树保存最值。
每次做题都要考虑周全,边界什么的,,
d=0时单独用贪心的方法算,其实不用也可以,。
代码:
int const N = 100005; int a[N], f[N];
int F[N<<2];
int n,d; void PushUp(int rt){
F[rt]=max( F[rt<<1],F[rt<<1|1] );
return;
} void build(int l,int r,int rt){
if(l==r){
F[rt]=0;
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
PushUp(rt);
} void update(int pos,int x,int l,int r,int rt){
if(l==r){
F[rt]=max( F[rt],x );
return;
}
int m=(l+r)>>1;
if(pos<=m)
update(pos,x,lson);
else
update(pos,x,rson);
PushUp(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l && r<=R){
return F[rt];
}
int m=(l+r)>>1;
int res=0;
if(L<=m)
res=max( res,query(L,R,lson) );
if(m<R)
res=max( res,query(L,R,rson) );
return res;
} int proc1(){
int d[N];
int cn=0;
d[0]=-1; rep(i,1,n){
if(a[i]>d[cn]){
d[++cn]=a[i];
}else{
int pos=lower_bound(d+1,d+1+cn,a[i])-d;
d[pos]=a[i];
}
}
return cn;
} int main(){ while(scanf("%d%d",&n,&d)!=EOF){ int es=-inf; rep(i,1,n){
scanf("%d",&a[i]);
es=max( es,a[i] );
} if(d==0){
int ans=proc1();
printf("%d\n",ans);
}else{
build(0,es,1);
int ans=1; rep(i,1,n){
if(i-d-1<=0){
f[i]=1;
}else{
update(a[i-d-1],f[i-d-1],0,es,1); //pos,x,l,r,rt
if(a[i]==0){
f[i]=1;
continue;
}
int t=query(0,a[i]-1,0,es,1); //L,R,l,r,rt
f[i]=t+1;
ans=max( ans,f[i] );
}
}
printf("%d\n",ans);
}
} return 0;
}
hdu 4521 小明序列(线段树,DP思想)的更多相关文章
- hdu 4521 小明系列问题——小明序列(线段树+DP或扩展成经典的LIS)
小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- hdu 4521 小明系列问题——小明序列 线段树+二分
小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Pro ...
- HDU 4521 小明系列问题——小明序列 (线段树维护DP)
题目地址:HDU 4521 基本思路是DP.找前面数的最大值时能够用线段树来维护节省时间. 因为间隔要大于d. 所以能够用一个队列来延迟更新,来保证每次询问到的都是d个之前的. 代码例如以下: #in ...
- hdu 4521 小明系列问题——小明序列 线段树
题意: 给你一个长度为n的序列v,你需要输出最长上升子序列,且要保证你选的两个相邻元素之间在原数组中的位置之差大于d 题解: 这个就是原来求最长上升子序列的加强版,这个思路和最长上升子序列的差不多 ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- HDU 4521 小明系列问题——小明序列 (线段树 单点更新)
题目连接 Problem Description 大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了.可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来 ...
- hdu 4521 小明系列问题——小明序列(线段树 or DP)
题目链接:hdu 4521 本是 dp 的变形,却能用线段树,感觉好强大. 由于 n 有 10^5,用普通的 dp,算法时间复杂度为 O(n2),肯定会超时.所以用线段树进行优化.线段树维护的是区间内 ...
- 【Foreign】划分序列 [线段树][DP]
划分序列 Time Limit: 20 Sec Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 9 4 ...
- HDU 4719Oh My Holy FFF 线段树+DP
/* ** 日期: 2013-9-12 ** 题目大意:有n个数,划分为多个部分,假设M份,每份不能多于L个.每个数有一个h[i], ** 每份最右边的那个数要大于前一份最右边的那个数.设每份最右边的 ...
随机推荐
- DP 习题
一.简单基础dp 这类dp主要是一些状态比较容易表示,转移方程比较好想,问题比较基本常见的.主要包括递推.背包.LIS(最长递增序列),LCS(最长公共子序列),下面针对这几种类型,推荐一下比较好的学 ...
- Android仿QQ空间发表动态
效果展示图: 功能描述:用户点击+会进入发表动态的界面,发表成功后跳转到个人首页. 后续完善:增加个人头像的上传,对界面进行优化,增加点赞和评论的功能. 主要采用listview对内容进行展示,对sq ...
- python matplotlib.pyplot 散点图详解(1)
python matplotlib.pyplot散点图详解(1) 一.创建散点图 可以用scatter函数创建散点图 并使用show函数显示散点图 代码如下: import matplotlib.py ...
- 【敏捷0】敏捷项目管理-为什么从敏捷开始?为什么从PMI-ACP开始?
作为敏捷项目管理的开篇文章,还是先来简单地说一说为什么先从敏捷开始,为什么是以 PMI-ACP 为参考.当然,这一系列的文章可能不可避免地会为 PMI-ACP 做一些广告,但是我想告诉大家的是,敏捷以 ...
- Docker系列(6)- 常用命令(2) | 镜像命令
准备工作 知道查看官方文档,官方文档描述的很详细,并且每一种类型.每一个命令的选项都有例子 会使用docker --help查看 镜像命令 docker images 查看所有本地主机上的镜像 [ro ...
- Promise源码实现与测试
const PENDING = 'pending', FULFILLED = 'fulfilled', REJECTED = 'rejected' class MyPromise { construc ...
- Oracle Haip无法启动问题学习
一.目标:Oracle Haip 启动报错 需求:日常运维过程中,已经遇到两次由于HAIP引发的问题,特此进行记录. 本次问题是看着大佬-李海清操作,整完了记录一下,上一次HAIP折腾了4个小时. O ...
- 鸿蒙内核源码分析(构建工具篇) | 顺瓜摸藤调试鸿蒙构建过程 | 百篇博客分析OpenHarmony源码 | v59.01
百篇博客系列篇.本篇为: v59.xx 鸿蒙内核源码分析(构建工具篇) | 顺瓜摸藤调试鸿蒙构建过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿 ...
- P5212-SubString【LCT,SAM】
正题 题目链接:https://www.luogu.com.cn/problem/P5212 题目大意 开始一个字符串\(S\),有\(n\)次操作 在\(S\)末尾加入一个字符串 询问一个串在\(S ...
- Css预编译(Sass&&Less)
目录 Less与Sass是css的预处理技术 而CoffeeScript.TypeScript则是javascript的预处理技术. Less与Sass是css的预处理技术 而CoffeeScript ...