目录

Wu Z., Xiong Y., Yu S. & Lin D. Unsupervised Feature Learning via Non-Parametric Instance Discrimination. arXiv preprint arXiv 1805.01978

这篇文章也是最近很虎的contrastive learning的经典之作, 其用于下游任务的处理虽没现在的简单粗暴, 但效果依然很好.

主要内容

因为作者实际上是从一个无监督的角度去考虑的, 其出发点就是, 如果希望将分类器将每一个样本都区分开来, 是否能够获得比较好的特征呢? 输入\(x\)经过embedding function 得到\(f_{\theta}(x)\), 即特征, 那么现在的问题是:

  • 目标是将所有样本作为一个单独的类别, 这就会导致类别个数很大, 甚至成百上千万, 如果这是还和普通的分类任务一样, 将
\[P(i|x) = \frac{\exp (w_i^T f_{\theta}(x))}{\sum_{i=1}^n \exp (w_j^T f_{\theta}(x))},
\]

​ 则最后一个分类层的权重\(W \in \mathbb{R}^{k \times n}\), 这将是无法承受的存储量和计算量.

为了解决这个问题, 作者选择的首先构造一个memory bank, 将特征存储起来, 第\(i\)个样本对应的为\(v_i\), 而当前\(f_{\theta}(x_i)\)记作\(f_i\), 则

\[P(i|x) = \frac{\exp (f_{\theta}(x)^Tv_i/\tau)}{\sum_{j=1}^n\exp(f_{\theta}(x)^T v_j / \tau)},
\]

这里\(\tau\)是temperature.

这样就避免了\(w\), 且符合直觉: 即衡量了\(f_{\theta}(x)\)与数据中的第\(i\)个样本的相关度. 但是, 虽然这一定程度上减少了存储量, 但是计算量并没有减少, 即我们需要估计分母\(Z_i\), 实际上, 这就是一个配平的问题, 这是负样本采样可以发挥作用的地方.

假设

\[h(i, v) := P(D=1|i,v) = \frac{P(i|v)}{P(i|v)+m P_n(i)},
\]

其中\(P_n(i)\)为一个均匀分布, 即每个特征被选中的概率为\(\frac{1}{n}\). 然后便是经典的损失

\[\mathcal{J}_{NCE} (\theta) = -\mathbb{E}_{P_d} [\log h(i, v)] - m \cdot \mathbb{E}_{P_n}(\log (1 -h(i,v'))).
\]

个人感觉: \(P_d(i, v) = P(v) \cdot Q(i|v)\), 其中\(Q(i|v)\)仅当\(v\)为第\(i\)个样本点的特征是概率为\(1\)否则为\(0\). 而\(P_n(i, v) = P(v) \cdot \frac{1}{n}\). 同时, 估计

\[Z_i \approx \frac{n}{m} \sum_{k=1}^m \exp(v_{jk}^T f_i/\tau),
\]

感觉就像是一个抽样. 这个\(\frac{n}{m}\)最新的文章里出现过, 但是当时没感觉出其意义来, 原来源头是在这?

解决了计算了和存储问题, 还有一个训练不稳定的问题要解决.

训练不稳定的诱因, 作者认为是每个样本作为一个类, 如此每个类在每个epoch里仅会被访问一次. 解决策略是用proximal 算子:

\[\mathcal{J}_{NCE}(\theta) = -\mathbb{E}_{P_d} [\log h(i, v^{(t-1)})-\lambda \|v^{(t)}-v^{(t-1)}\|] - m \cdot \mathbb{E}_{P_n}(\log (1 -h(i,v'))).
\]

有疑问的是, 我看的proximal算法里面, 应该是\(\log h(i, v^{(t)})\), 虽然二者可能相差不大.

Unsupervised Feature Learning via Non-Parametric Instance Discrimination的更多相关文章

  1. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  2. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

  3. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

  4. [转] 无监督特征学习——Unsupervised feature learning and deep learning

    from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio ...

  5. UFLDL(Unsupervised Feature Learning and Deep Learning)

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  6. Unsupervised Feature Learning and Deep Learning(UFLDL) Exercise 总结

    7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到 ...

  7. Joint Detection and Identification Feature Learning for Person Search

    Joint Detection and Identification Feature Learning for Person Search 2018-06-02 本文的贡献主要体现在: 提出一种联合的 ...

  8. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  9. 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification

    ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...

随机推荐

  1. 几种常用JavaScript设计模式es6

    设计模式分类(23种设计模式) 创建型 单例模式 原型模式 工厂模式 抽象工厂模式 建造者模式 结构型 适配器模式 装饰器模式 代理模式 外观模式 桥接模式 组合模式 享元模式 行为型 观察者模式 迭 ...

  2. MapStruct对象转换

    第一次看到 MapStruct 的时候, 我个人非常的开心.因为其跟我内心里面的想法不谋而合. 1 MapStruct 是什么? 1.1 JavaBean 的困扰 对于代码中 JavaBean之间的转 ...

  3. LR中的快捷建

    Ctrl+F  弹出搜索对话框 CTRL+F8  弹出view tree 界面 (寻找关联) 觉得不错的可关注微信公众号在手机上观看,让你用手机边玩边看

  4. java通过jdbc连接数据库并更新数据(包括java.util.Date类型数据的更新)

    一.步骤 1.获取Date实例,并通过getTime()方法获得毫秒数: 2.将获取的毫秒数存储到数据库中,注意存储类型为nvarchar(20): 3.读取数据库的毫秒数,作为Date构造方法的参数 ...

  5. solr8.2

    https://www.cnblogs.com/carlosouyang/p/11352779.html

  6. 【力扣】两个数组的交集 II

    给定两个数组,编写一个函数来计算它们的交集. 示例 1: 输入:nums1 = [1,2,2,1], nums2 = [2,2]输出:[2,2]示例 2: 输入:nums1 = [4,9,5], nu ...

  7. shell脚本 查看cpu的温度

    一.简介 源码地址 日期:2018/8/24 介绍:查看主板上单个多核CPU中温度最高的一个内核 效果图: 二.使用 适用:centos6+ 语言:英文 注意:需要先安装lm_sensors,不支持虚 ...

  8. 从零开始写一个前端脚手架四、初始化进程提示(chalk)

    我们之前说过bin里面的index.js文件是作为入口文件存在的.实际上的初始化内容在.action里面操作的,为了方便管理,我们把实际操作的代码抽出来放一块儿管理 创建指令文件 在根目录创建一个co ...

  9. 转: iPhone屏幕尺寸、分辨率及适配

    1.iPhone尺寸规格 设备 iPhone 宽 Width 高 Height 对角线 Diagonal 逻辑分辨率(point) Scale Factor 设备分辨率(pixel) PPI 3GS ...

  10. Python中冷门但非常好用的内置函数

    Python中有许多内置函数,不像print.len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性 Counter collections在pyt ...