matlab——线性规划
@
前言
线性规划是数学规划中的一个重要分支,常用于解决如何利用现有资源来安排生产,以取得最大经济效益的问题。本文将粗略地介绍线性规划,matlab实现和常见变形。
一、基本概念
一般线性规划问题地(数学)标准型为
y=
\begin{cases}
\sum\limits_{j=1}^na_{ij}x_j=b_i,i=1,2,...,m\\
x_j\geq0,j=1,2,...,n
\end{cases}
\tag{1}
\]
可行解:满足约束条件的解\(x=[x_1,...,x_n]^T\)
最优解:使目标函数达到最大值的可行解
二、matlab实现
1.常用函数
matlab中规定线性规划的标准形式为:
\begin{cases}
\pmb{A\cdot x}\leq \pmb b,\\
Aeq \cdot \pmb x=beq\\
lb\leq x\leq ub
\end{cases}
\]
其中\(\pmb{f,x,b},beq,lb,ub\)为列向量, \(\pmb f\)称为价值向量,\(\pmb b\)称为资源向量;\(\pmb A,Aeq\)为矩阵。
matlab求线性规划的函数为
[x,fval]=linprog(f,A,b);
[x,fval]=linprog(f,A,b,Aeq,beq);
[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub);//如果Aeq,beq不存在用[]代替
注意:
(1)如果是求\(\underset {x}{max}\ \pmb f^T\pmb x\),则需转化为\(\underset {x}{min}\ \pmb {-f}^T\pmb x\),答案为函数求出来的值的相反数。
(2)在得到矩阵\(\pmb {A,b}\)前,要将所有不等式转化为\(\pmb {Ax}\leq \pmb b\)的形式。
2.常见变形
\]
这看起来不是线性规划,但可以通过变换转化成线性规划问题。
注意到对任意\(x_i\),存在\(u_i,v_i\geq 0\)满足
\]
记\(\pmb u=[u_1,...,u_n]^T,\pmb v=[v_1,...,v_n]^T\),于是上述问题转化为
\begin{cases}
\pmb{A\cdot (u-v)}\leq \pmb b,\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]
改写成matlab形式
\begin{cases}
[A,-A]\cdot \left[ \begin{matrix} \pmb u\\\pmb v\end{matrix}\right],\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]
code:
//z=|x1|+2|x2|+3|x3|+4|x4|
f=1:4;
f=[f,f]';
A=[1,-1,-1,1;1,-1,1,-3;1,-1,-2,3];
A=[A,-A];
b=[-2;-1;-0.5];
[y,z]=linprog(f,A,b,[],[],zeros(8,1));
x=y(1:4)-y(5:end)
z
参考书目
《数学建模算法与应用》
matlab——线性规划的更多相关文章
- Matlab线性规划
线性规划 线性规划的标准形式 \[\underset{x}{min}{\ c^Tx}\ s.t.\ Ax \leqslant b\] 例如,线性规划为: \[ \underset{x}{min ...
- Matlab 线性规划问题模型代码
线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ ...
- MATLAB 线性规划实例应用
线性规划 线性规划函数 功能:求解线性规划问题 语法 x = linprog(f,A,b):求解问题 min fx,约束条件为 Ax <= b x = linprog(f,A,b,Aeq,beq ...
- matlab绘图--线性规划图解法示意
matlab绘图--线性规划图解法示意 图解法 matlab绘图 区域填充 线性规划问题: matlab绘图 L1=[4,0;4,4]; plot(L1(:,1),L1(:,2));hold on ...
- 小小知识点(四)——MATLAB如何画等高线图和线性规划约束方程
MATLAB程序: figure contourf(x,y,data) % 画等高线 hold on plot(x,y(x)) %画线性规划约束方程1 hold on plot(y,x(y)) %画线 ...
- 线性规划 Matlab
线性规划的 Matlab 解法 形式 s.t.( subject to) c和 x为n 维列向量, A. Aeq 为适当维数的矩阵,b .beq为适当维数的列向 量. 函数: linprog(c,A, ...
- Matlab的linprog解决简单线性规划问题
一个简单的线性规划问题,使用Matlab的linprog解决 假定有n种煤,各种煤的配比为x1,x2,x3,……首先需要满足下列两个约束条件,即 x1+x2+x3……+xn=1 x1≥0, x2≥0, ...
- yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)
最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...
- MATLAB规划问题——线性规划和非线性规划
1.线性规划 求线性规划问题的最优解有两种方法,一种方法是使用linprog命令,另一种是使用optimtool工具箱,下面分别介绍这两种方法. ①linprog命令 一般情况下,Linprog命令的 ...
随机推荐
- 状压dp(总结)状态压缩
状压这个和二进制分不开关系 所以,对于二进制的熟悉是必不可少的技能 & 与操作,1不变,0变0 | 或操作,0不变,1变1 ^ 异或操作,0不变,1取反 - 取反操作,把每一个二进制位0 ...
- PVD与CVD性能比较
PVD与CVD性能比较 CVD定义: 通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程. CVD技术特点: 具有淀积温度低.薄膜成分和厚度易于控制.均匀性和重复性好.台阶覆盖优良.适用范围广.设备 ...
- 大型图像数据聚类匹配:ICCV2019论文解析
大型图像数据聚类匹配:ICCV2019论文解析 Jointly Aligning Millions of Images with Deep Penalised Reconstruction Conge ...
- NVIDIA Turing Architecture架构设计(下)
NVIDIA Turing Architecture架构设计(下) GDDR6 内存子系统 随着显示分辨率不断提高,着色器功能和渲染技术变得更加复杂,内存带宽和大小在 GPU 性能中扮演着更大的角色. ...
- 快手推荐系统及 Redis 升级存储
快手推荐系统及 Redis 升级存储 借傲腾 补上 DRAM 短板 内容简介: 作为短视频领域的领先企业,快手需要不断导入更先进的技术手段来调整和优化其系统架构,以应对用户量和短视频作品数量的爆炸式 ...
- 初具雏形的UL标准侧重于自主车辆的安全性
初具雏形的UL标准侧重于自主车辆的安全性 Nascent UL standard focuses on autonomous vehicle safety 就任何自主汽车(AV)的安全性进行可信的争论 ...
- zookeeper命令行练习,熟练节点权限, 数组越界异常解决方案
https://www.cnblogs.com/qlqwjy/p/10517231.html zookeeper 创建持久有序节点时候报错,我的版本号是3.4.12, 亲测有效 https://blo ...
- React-Antd4的Form表单校验
之前很少用react做项目,最近入职新公司,用的react,在自己的摸索过程中,慢慢会记录一些使用方法.今天简单记录一下使用antd 4.0版本的Form表单校验,直接代码. 需要购买阿里云产品和服务 ...
- redis学习第一天
不同于其他的常用关系型数据库,redis是一个非常轻便,体积小,存放键值对的数据库,常用于构建高性能,可扩展的Web应用程序. 这是我第一次接触redis,之前没有使用过,只听说过.因为刚毕业,找工作 ...
- 一个线上 Maven 诡异问题排查过程
å. 前言 现在的大部分 Java 应用基本都是通过 Maven 进行组织的,不论是分布式应用还是单体集群应用往往都会通过一个 父 POM 加若干子 POM 完成项目的组织.然而这种多应用多模块的拆分 ...