@


前言

线性规划是数学规划中的一个重要分支,常用于解决如何利用现有资源来安排生产,以取得最大经济效益的问题。本文将粗略地介绍线性规划,matlab实现和常见变形。

一、基本概念

一般线性规划问题地(数学)标准型为

\[max\quad z=\sum\limits_{j=1}^nc_jx_j, \\s.t \quad
y=
\begin{cases}
\sum\limits_{j=1}^na_{ij}x_j=b_i,i=1,2,...,m\\
x_j\geq0,j=1,2,...,n
\end{cases}
\tag{1}
\]

可行解:满足约束条件的解\(x=[x_1,...,x_n]^T\)

最优解:使目标函数达到最大值的可行解

二、matlab实现

1.常用函数

matlab中规定线性规划的标准形式为:

\[\underset {x}{min}\ \pmb f^T\pmb x,\\s.t\quad
\begin{cases}
\pmb{A\cdot x}\leq \pmb b,\\
Aeq \cdot \pmb x=beq\\
lb\leq x\leq ub
\end{cases}
\]

其中\(\pmb{f,x,b},beq,lb,ub\)为列向量, \(\pmb f\)称为价值向量,\(\pmb b\)称为资源向量;\(\pmb A,Aeq\)为矩阵。

matlab求线性规划的函数为

[x,fval]=linprog(f,A,b);
[x,fval]=linprog(f,A,b,Aeq,beq);
[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub);//如果Aeq,beq不存在用[]代替

注意

(1)如果是求\(\underset {x}{max}\ \pmb f^T\pmb x\),则需转化为\(\underset {x}{min}\ \pmb {-f}^T\pmb x\),答案为函数求出来的值的相反数。

(2)在得到矩阵\(\pmb {A,b}\)前,要将所有不等式转化为\(\pmb {Ax}\leq \pmb b\)的形式。

2.常见变形

\[min\quad |x_1|+|x_2|+...+|x_n|,\\ s.t\quad \pmb {Ax\leq b}.
\]

这看起来不是线性规划,但可以通过变换转化成线性规划问题。

注意到对任意\(x_i\),存在\(u_i,v_i\geq 0\)满足

\[x_i=u_i-v_i,|x_i|=u_i+v_i\\u_i=\frac{x_i+|x_i|}{2},v_i=\frac{|x_i|-x_i}{2}
\]

记\(\pmb u=[u_1,...,u_n]^T,\pmb v=[v_1,...,v_n]^T\),于是上述问题转化为

\[min\quad \sum\limits_{i=1}^{n}(u_i+v_i),\\s.t\
\begin{cases}
\pmb{A\cdot (u-v)}\leq \pmb b,\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]

改写成matlab形式

\[min\quad ,\left[ \begin{matrix} 1\\1\end{matrix}\right]^T\left[ \begin{matrix} \pmb u\\\pmb v\end{matrix}\right]\\s.t\
\begin{cases}
[A,-A]\cdot \left[ \begin{matrix} \pmb u\\\pmb v\end{matrix}\right],\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]

code:

//z=|x1|+2|x2|+3|x3|+4|x4|
f=1:4;
f=[f,f]';
A=[1,-1,-1,1;1,-1,1,-3;1,-1,-2,3];
A=[A,-A];
b=[-2;-1;-0.5];
[y,z]=linprog(f,A,b,[],[],zeros(8,1));
x=y(1:4)-y(5:end)
z

参考书目

《数学建模算法与应用》

matlab——线性规划的更多相关文章

  1. Matlab线性规划

    线性规划   线性规划的标准形式 \[\underset{x}{min}{\ c^Tx}\ s.t.\ Ax \leqslant b\]   例如,线性规划为: \[ \underset{x}{min ...

  2. Matlab 线性规划问题模型代码

    线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ ...

  3. MATLAB 线性规划实例应用

    线性规划 线性规划函数 功能:求解线性规划问题 语法 x = linprog(f,A,b):求解问题 min fx,约束条件为 Ax <= b x = linprog(f,A,b,Aeq,beq ...

  4. matlab绘图--线性规划图解法示意

    matlab绘图--线性规划图解法示意 图解法 matlab绘图 区域填充 线性规划问题: matlab绘图 L1=[4,0;4,4];  plot(L1(:,1),L1(:,2));hold on  ...

  5. 小小知识点(四)——MATLAB如何画等高线图和线性规划约束方程

    MATLAB程序: figure contourf(x,y,data) % 画等高线 hold on plot(x,y(x)) %画线性规划约束方程1 hold on plot(y,x(y)) %画线 ...

  6. 线性规划 Matlab

    线性规划的 Matlab 解法 形式 s.t.( subject to) c和 x为n 维列向量, A. Aeq 为适当维数的矩阵,b .beq为适当维数的列向 量. 函数: linprog(c,A, ...

  7. Matlab的linprog解决简单线性规划问题

    一个简单的线性规划问题,使用Matlab的linprog解决 假定有n种煤,各种煤的配比为x1,x2,x3,……首先需要满足下列两个约束条件,即 x1+x2+x3……+xn=1 x1≥0, x2≥0, ...

  8. yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)

    最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...

  9. MATLAB规划问题——线性规划和非线性规划

    1.线性规划 求线性规划问题的最优解有两种方法,一种方法是使用linprog命令,另一种是使用optimtool工具箱,下面分别介绍这两种方法. ①linprog命令 一般情况下,Linprog命令的 ...

随机推荐

  1. 状压dp(总结)状态压缩

    状压这个和二进制分不开关系 所以,对于二进制的熟悉是必不可少的技能 &  与操作,1不变,0变0 |  或操作,0不变,1变1 ^  异或操作,0不变,1取反 - 取反操作,把每一个二进制位0 ...

  2. PVD与CVD性能比较

    PVD与CVD性能比较 CVD定义: 通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程. CVD技术特点: 具有淀积温度低.薄膜成分和厚度易于控制.均匀性和重复性好.台阶覆盖优良.适用范围广.设备 ...

  3. 大型图像数据聚类匹配:ICCV2019论文解析

    大型图像数据聚类匹配:ICCV2019论文解析 Jointly Aligning Millions of Images with Deep Penalised Reconstruction Conge ...

  4. NVIDIA Turing Architecture架构设计(下)

    NVIDIA Turing Architecture架构设计(下) GDDR6 内存子系统 随着显示分辨率不断提高,着色器功能和渲染技术变得更加复杂,内存带宽和大小在 GPU 性能中扮演着更大的角色. ...

  5. 快手推荐系统及 Redis 升级存储

    快手推荐系统及 Redis 升级存储  借傲腾 补上 DRAM 短板 内容简介: 作为短视频领域的领先企业,快手需要不断导入更先进的技术手段来调整和优化其系统架构,以应对用户量和短视频作品数量的爆炸式 ...

  6. 初具雏形的UL标准侧重于自主车辆的安全性

    初具雏形的UL标准侧重于自主车辆的安全性 Nascent UL standard focuses on autonomous vehicle safety 就任何自主汽车(AV)的安全性进行可信的争论 ...

  7. zookeeper命令行练习,熟练节点权限, 数组越界异常解决方案

    https://www.cnblogs.com/qlqwjy/p/10517231.html zookeeper 创建持久有序节点时候报错,我的版本号是3.4.12, 亲测有效 https://blo ...

  8. React-Antd4的Form表单校验

    之前很少用react做项目,最近入职新公司,用的react,在自己的摸索过程中,慢慢会记录一些使用方法.今天简单记录一下使用antd 4.0版本的Form表单校验,直接代码. 需要购买阿里云产品和服务 ...

  9. redis学习第一天

    不同于其他的常用关系型数据库,redis是一个非常轻便,体积小,存放键值对的数据库,常用于构建高性能,可扩展的Web应用程序. 这是我第一次接触redis,之前没有使用过,只听说过.因为刚毕业,找工作 ...

  10. 一个线上 Maven 诡异问题排查过程

    å. 前言 现在的大部分 Java 应用基本都是通过 Maven 进行组织的,不论是分布式应用还是单体集群应用往往都会通过一个 父 POM 加若干子 POM 完成项目的组织.然而这种多应用多模块的拆分 ...