solutions

题面(loj)

题面(luogu)

这个题吧是我很久很久以前留下的坑了,到了今天才补好。(是不是太菜了)

暴力

这个和之前的题解一样,确实可以用 trie 树,这复杂度是\(\mathcal{O(n^3m^3)}\)。

您就是初学OI,也不应该看到数据范围之后想到这样的复杂度。

所以这个暴力就直接舍弃吧。

但是如果别的题用到了,还是可以试一试的,毕竟考试的时候部分分还是比较重要的。

正解

不知道咱也不知道为啥这个题的思路可以如此的妙。

首先考虑,每一个合法的能够让一个玩家赢的字符串序列一定是由一个啥也匹配不上的序列和当前玩家的序列构成并且当前玩家的序列是整个序列的后缀。

但是你发现,完全无法找全这样的每一个序列,并且序列是无限个的。

假如我当前有一个序列 S ,那么我可以得到一个合法的序列。

设这个合法的序列为 \(N=S+a_j\),\(a_j\) 为每一个玩家的序列。

可能你会认为,这样不就是 \(j\) 玩家获胜的概率了????

你错了,你不知道这个 \(S\) 里面会发生什么,也许这个 \(S\) 中已经满足了另外一个玩家的序列

所以一切都在不可测之中。

但是你并不关心前面的序列究竟是什么,因为他的末尾一定是 \(a_j\)。

这样的话我们就需要把前面所有的情况都算上,全部!!!

比如说我们这里有两个人 \(HT\) , \(TH\)。

那么我们就有这样一个不太好的序列 \(HTH\) ,这种序列就是我所说的那种坏坏的序列

虽然他是以 \(TH\) 结尾的,但是他前面包含了 \(HT\) 这个序列,所以我们会发现,

在以 \(TH\) 结尾的所有序列中(前面可以加入任意多个字符,当然也可以不加),

我们发现,这种序列的贡献由两部分组成,一部分是 \(TH\) 结尾的贡献,

另一部分就是 \(HT\) 结尾的贡献,那么现在最大的问题就是如何计算这个贡献。

你发现这时候想着想着正解就在眼前了。

这时候你不确定这些序列会造成多少贡献,就是你不知道这些以玩家序列结尾的序列的贡献

所以这里也是一个未知数N,那其他的玩家胜利的概率 \(x_i\) ,这时候我们已经找到了 \(n+1\) 个未知数了。

接下来的任务就是如何求解这些未知数了,一般遇到这么多未知数,一眼就是高斯消元。

所以我们就要寻找这些未知数之间的关系。

第一个方程,一定会有一个玩家胜利,那么 \(\sum\limits_{i=1}^{n}x_i=1\)

根据刚才我们的分析,我们发现,对于以玩家序列结尾的序列可以根据每两个玩家的序列分为很多部分,

这个序列出现的概率就是 \(\frac{1}{n}N\) 而如果当前玩家的前缀和其他玩家的后缀相同,

那这个概率就可以表示为这些玩家胜出的概率再乘上出现当前情况的概率,

我们设 \(fro_{ij}\) 表示 \(i\) 玩家的长度为 \(j\) 的前缀,后缀同样处理为 \(beh_{ij}\)

于是我们就有 \(\frac{1}{n}N=\sum\limits_{i=1}^{n}x_i\sum\limits_{j=1}^{n}\sum\limits_{k=0}^{m}[fro_{ik}==beh_{jk}]\frac{1}{2^{m-k}}\)

这时候我们就有 \(n+1\) 条方程了,就是直接高斯消元即可

AC_code

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ull unsigned long long
#define double long double
const int N=305;
int n,m;
char ch[N][N];
ull hs[N][N],bas=131,ba[N];
double a[N][N],x[N],mse[N];
signed main(){
scanf("%d%d",&n,&m);
ba[0]=1;mse[0]=1;
for(re i=1;i<=m;i++)
ba[i]=ba[i-1]*bas,
mse[i]=mse[i-1]/2.0;
for(re i=1;i<=n;i++){
scanf("%s",ch[i]+1);
for(re j=1;j<=m;j++)
hs[i][j]=hs[i][j-1]*bas+ch[i][j];
}
for(re i=1;i<=n;i++){
for(re j=1;j<=n;j++){
double ans=0;
for(re k=0;k<=m;k++){
ull tmpf=hs[i][k];
ull tmpb=hs[j][m]-hs[j][m-k]*ba[k];
if(tmpf==tmpb)ans+=mse[m-k];//cout<<k<<" ";
}
//cout<<endl;
//cout<<ans<<" "<<mse[0]<<endl;
a[i][j]=ans;
}
a[i][n+1]=-mse[m];
}
for(re i=1;i<=n;i++)a[n+1][i]=1.0;
a[n+1][n+2]=1.0;n++;
int h,z;
for(h=1,z=1;h<=n&&z<=n;h++,z++){
int maxn;
for(re i=h;i<=n;i++)
if(a[i][z]!=0){
maxn=i;break;
}
if(maxn!=h)
for(re i=1;i<=n+1;i++)
swap(a[maxn][i],a[h][i]);
//if(fabs(a[h][z])==0){
// h--;continue;
//`}
for(re i=h+1;i<=n;i++)
if(a[i][z]!=0){
double t=a[i][z]/a[h][z];
for(re j=z;j<=n+1;j++)
a[i][j]-=a[h][j]*t;
}
}
//cout<<h<<" "<<z<<endl;
for(re i=n;i>=1;i--){
double t=a[i][n+1];
for(re j=n;j>i;j--)
t-=a[i][j]*x[j];//cout<<t<<" "<<a[i][j]<<endl;
x[i]=t/a[i][i];
//cout<<t<<endl;
}
for(re i=1;i<=n-1;i++){
printf("%.10Lf\n",x[i]);
}
}


<题解>[SDOI2017]硬币游戏的更多相关文章

  1. 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)

    [BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...

  2. 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元

    [BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...

  3. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  4. [Sdoi2017]硬币游戏 [高斯消元 KMP]

    [Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...

  5. 4820: [Sdoi2017]硬币游戏

    4820: [Sdoi2017]硬币游戏 链接 分析: 期望dp+高斯消元. 首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大.但是AC自动机上末尾节点 ...

  6. BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*

    BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...

  7. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  8. luogu3706 [SDOI2017]硬币游戏

    LINK:硬币游戏 对于40分的暴力 构造出AC自动机 列出转移矩阵 暴力高消.右转上一篇文章. 对于100分 我们不难想到这个矩阵过大 且没有用的节点很多我们最后只要n个节点的答案 其他节点的答案可 ...

  9. [bzoj4820][Sdoi2017]硬币游戏

    来自FallDream的博客,未经允许,请勿转载,谢谢. 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了 ...

随机推荐

  1. 十七、.net core(.NET 6)搭建基于Quartz组件的定时调度任务

     搭建基于Quartz组件的定时调度任务 先在package包项目下,添加Quartz定时器组件: 新建类库项目Wsk.Core.QuartzNet,并且引用包类库项目.然后新建一个中间调度类,叫Qu ...

  2. 【模拟8.09】建设城市(city) (容斥)

    放在了考试T1 发现70分的DP很水啊,f[i][j]为当前位置是i分配了j个队的方案 我们用前缀和统计,在将i删去,j倒序枚举,就可以删掉一维(也可以滚动数组滚起来) 1 #include<i ...

  3. 在线博客转PDF电子书 | JS爬虫初探

    最近在看一位大佬写的源码解析博客,平时上下班用手机看不太得劲,但是平板又没有网卡,所以就想搞个离线pdf版,方便通勤时间学习阅读. 所以,问题来了: 怎么把在线网页内容转成pdf? 这位大佬的博客是用 ...

  4. Linux关闭打开防火墙命令

    Linux下打开和关闭防火墙 1.及时生效,重启后复原 关闭:service iptables stop  开启:service iptalbes start  查看状态:service iptabl ...

  5. 远程连接MySQL错误“plugin caching_sha2_password could not be loaded”的解决办法

    远程连接MySQL错误"plugin caching_sha2_password could not be loaded"的解决办法 问题描述: 今天在阿里云租了一个服务器,当我用 ...

  6. pip安装setuptools_rust报错

    公司项目中有主备CDN存在,由于阿里云以及腾讯云的预热功能不支持自动(一般是云函数),所以就根据云厂商给的脚本稍作更改,手动传入数据来进行预热. 由于之前部署在centos7.7系统python2.7 ...

  7. Mysql在线DDL

    1.  Mysql各版本DDL方式 1.1 MysqlDDL演进 当mysql某个业务表上有未提交的活动事务的时候,你去执行在线DDL,这相当危险,直接会被卡住,show processlist里面会 ...

  8. 17、ansible配置管理

    17.1.前言: 1.说明: ansible是自动化运维工具,基于Python开发,实现了批量系统配置.批量程序部署.批量运行命令等功能. ansible是基于模块工作的,本身没有批量部署的能力,真正 ...

  9. HDU 1686 Oulipo kmp裸题

    kmp算法可参考 kmp算法 汇总 #include <bits/stdc++.h> using namespace std; const int maxn=1000000+5; cons ...

  10. 前端 JavaScript 实现一个简易计算器

    前端使用 JavaScript 实现一个简易计算器,没有难度,但是里面有些小知识还是需要注意的,算是一次基础知识回顾吧. 题目 实现一个简易版的计算器,需求如下: 1.除法操作时,如果被除数为0,则结 ...