Bear Limak examines a social network. Its main functionality is that two members can become friends (then they can talk with each other and share funny pictures).

There are n members, numbered 1 through n. m pairs of members are friends. Of course, a member can't be a friend with themselves.

Let A-B denote that members A and B are friends. Limak thinks that a network is reasonable if and only if the following condition is satisfied: For every three distinct members (X, Y, Z), if X-Y and Y-Z then also X-Z.

For example: if Alan and Bob are friends, and Bob and Ciri are friends, then Alan and Ciri should be friends as well.

Can you help Limak and check if the network is reasonable? Print "YES" or "NO" accordingly, without the quotes.

Input

The first line of the input contain two integers n and m (3 ≤ n ≤ 150 000, ) — the number of members and the number of pairs of members that are friends.

The i-th of the next m lines contains two distinct integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi). Members ai and bi are friends with each other. No pair of members will appear more than once in the input.

Output

If the given network is reasonable, print "YES" in a single line (without the quotes). Otherwise, print "NO" in a single line (without the quotes).

Example

Input
4 3
1 3
3 4
1 4
Output
YES
Input
4 4
3 1
2 3
3 4
1 2
Output
NO
Input
10 4
4 3
5 10
8 9
1 2
Output
YES
Input
3 2
1 2
2 3
Output
NO

Note

The drawings below show the situation in the first sample (on the left) and in the second sample (on the right). Each edge represents two members that are friends. The answer is "NO" in the second sample because members (2, 3) are friends and members (3, 4) are friends, while members (2, 4) are not。

题意:给定N个点M条链路来描述两个点之间的关系,并且A-B,B-C,那么A-C一定要有边,问你给定的符不符合要求

思路:并查集,把连在一起的统计到一棵树上,然后树上所有点的边数都应该相等

#include <iostream>
#include <cstdio>
using namespace std;
int fa[100050], du[100050], ran[100050];
int find(int a)
{
return fa[a] == a ? a : find(fa[a]);
}
void bing(int x, int y)
{
x = find(x);
y = find(y);
if (x != y)
{
fa[x] = y;
}
}
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i <= n; i++)
{
fa[i] = i, du[i] = 0, ran[i] = 0;
}
for (int i = 0; i < m; i++)
{
int a, b;
cin >> a >> b;
bing(a, b);
du[a]++, du[b]++;
}
for (int i = 0; i <= n; i++)
{
int x = find(i);
ran[x]++;
}
int flag = 0;
for (int i = 0; i <= n; i++)
{
int x = find(i);
if (du[i] != ran[x] - 1)
{
flag = 1;
break;
}
}
if (!flag)
cout << "YES" << endl;
else
cout << "NO" << endl;
return 0;
}

CodeForce-791B Bear and Friendship Condition(并查集)的更多相关文章

  1. Codeforces 791B. Bear and Friendship Condition 联通快 完全图

    B. Bear and Friendship Condition time limit per test:1 second memory limit per test:256 megabytes in ...

  2. Codeforces 791B Bear and Friendship Condition(DFS,有向图)

    B. Bear and Friendship Condition time limit per test:1 second memory limit per test:256 megabytes in ...

  3. Codeforces791 B. Bear and Friendship Condition

    B. Bear and Friendship Condition time limit per test 1 second memory limit per test 256 megabytes in ...

  4. codeforces round #405 B. Bear and Friendship Condition

    B. Bear and Friendship Condition time limit per test 1 second memory limit per test 256 megabytes in ...

  5. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) B - Bear and Friendship Condition 水题

    B. Bear and Friendship Condition 题目连接: http://codeforces.com/contest/791/problem/B Description Bear ...

  6. 【codeforces 791B】Bear and Friendship Condition

    [题目链接]:http://codeforces.com/contest/791/problem/B [题意] 给你m对朋友关系; 如果x-y是朋友,y-z是朋友 要求x-z也是朋友. 问你所给的图是 ...

  7. 【CF771A】Bear and Friendship Condition

    题目大意:给定一张无向图,要求如果 A 与 B 之间有边,B 与 C 之间有边,那么 A 与 C 之间也需要有边.问这张图是否满足要求. 题解:根据以上性质,即:A 与 B 有关系,B 与 C 有关系 ...

  8. CF #405 (Div. 2) B. Bear ad Friendship Condition (dfs+完全图)

    题意:如果1认识2,2认识3,必须要求有:1认识3.如果满足上述条件,输出YES,否则输出NO. 思路:显然如果是一个完全图就输出YES,否则就输出NO,如果是无向完全图则一定有我们可以用dfs来书边 ...

  9. ZOJ:2833 Friendship(并查集+哈希)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2833 A friend is like a flower, a rose ...

随机推荐

  1. spring security整体流程

    spring-security原理 图片中各个类的作用: 1JwtUser类:实现Springsecurity的UserDetails类,此类必须有三个属性 private String userna ...

  2. 获取访问者真实ip地址?我觉得不可能

    我们真的能通过请求来获取用户真实的ip地址嘛? 答案是不能,如果能,肯定是我学的不够深入,欢迎交流指正. 那么写这篇文章的意义是什么?我们接着往下看. IP地址相当于电脑在网络上的身份证,但事实上IP ...

  3. 第12篇-认识CodeletMark

    InterpreterCodelet依赖CodeletMark完成自动创建和初始化.CodeletMark继承自ResourceMark,允许自动析构,执行的主要操作就是,会按照Interpreter ...

  4. ASP.NET Core:ASP.NET Core中使用NLog记录日志

    一.前言 在所有的应用程序中,日志功能是不可或缺的模块,我们可以根据日志信息进行调试.查看产生的错误信息,在ASP.NET Core中我们可以使用log4net或者NLog日志组件来实现记录日志的功能 ...

  5. 0x800b010a 证书

    无论是装微软的什么应用,只要报这个错误,下载这个证书: http://download.microsoft.com/download/2/4/8/248D8A62-FCCD-475C-85E7-6ED ...

  6. Qt迭代器(Java类型和STL类型)详解

    迭代器为访问容器类里的数据项提供了统一的方法,Qt 有两种迭代器类:Java 类型的迭代器和 STL 类型的迭代器. 两者比较,Java 类型的迭代器更易于使用,且提供一些高级功能,而 STL 类型的 ...

  7. Qt 中事件与处理

    一.事件与处理程序在运算过程中发生的一些事情:鼠标单击.键盘的按下...这些的事件的监控与处理在Qt中不是以信号的方式处理的.当这些事件发生时会调用QObject类中的功能函数(虚函数),所有的控件类 ...

  8. 不同的 count 用法

    不同的 count 用法效率:在 select count(?) from t 这样的查询语句里面, count(*).count(主键 id).count(字段) 和 count(1) 等不同用法的 ...

  9. Servlet体系及方法

    时间:2016-11-11 15:07 --Servlet体系Servlet(interface):    实现类:GenericServlet.HttpServletServletConfig(in ...

  10. hdfs中数据迁移

    1.hdfs集群间数据迁移 hadoop distcp hdfs://192.128.112.66:8020/user/hive/warehouse/data.db/dwi_xxxx_d  /user ...