题解

这道题我们发现可以根据 \(k=1\) 和 \(k=2\) 的情况分别讨论

\(k=1\) 时,我们发现要保证字典序,那么我们从后往前扫,扫的时候判断一下当前数是否会和上一段的冲突。

复杂度瓶颈就在于如何判断。我们发现 \(a_i\leq 2^{17}\) 所以 \(j*j=a_i+a_k\) 中 \(j\) 最大为 \(2^9\),所以我们可以枚举 \(j\),记录一个数组,判断一下 \(j*j-a_i\) 是否出现过

最后若分出新的一段,记得要把前一段的清空。

\(k=2\) 时,我们可以把每个数拆成两个点,分别为 \(x_1\),\(x_2\),\(y_1\),\(y_2\),让后将冲突的数连起来,发现如果其符合二分图,那么就可以分为一组。

对于判断二分图,我们可以用并查集替代。(思想

对于每个数,我们给他开一个敌人域,每次若发现冲突,但可以分成两个团体解决,那么我们将两个树的敌人域向与其发生冲突的数合并

判断时就是判断 \(x_1\) 是否和 \(y_1\) 在一个集合里。

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=(1<<17)+7;
int a[N],vis[N],st[N],fa[N<<1],fg[N<<1],n,k,tot=1,mx;
int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read(),k=read();
for (ri i(1);i<=n;p(i)) a[i]=read(),mx=cmax(mx,a[i]);
vis[a[n]]=1;st[1]=n;
if (k==1) {
for (ri i(n-1);i;--i) {
for (ri j(ceil(sqrt(a[i])));j*j-a[i]<=mx;p(j)) {
if (j*j>=a[i]&&vis[j*j-a[i]]) {
st[p(tot)]=i;
for (ri k(i+1);k<=st[tot-1];p(k)) vis[a[k]]=0;
break;
}
}
vis[a[i]]=1;
}
} else {
for (ri i(1);i<=mx;p(i)) fa[i]=i,fa[i+mx]=i+mx;
for (ri i(1);i*i<=(mx<<1);p(i)) fg[i*i]=1;
for (ri i(n-1);i;--i) {
ri fl=0;
if (vis[a[i]]) {
if (fg[a[i]<<1]) {
if (vis[a[i]]==2||fa[a[i]+mx]!=a[i]+mx) fl=1;
}
} else {
for (ri j(ceil(sqrt(a[i])));j*j-a[i]<=mx;p(j)) {
if (vis[j*j-a[i]]) {
if (fg[(j*j-a[i])<<1]&&vis[j*j-a[i]]==2) {fl=1;break;}
int x1=find(a[i]),x2=find(a[i]+mx),y1=find(j*j-a[i]),y2=find(j*j-a[i]+mx);
if (x1==y1) {fl=1;break;}
fa[y2]=x1;fa[x2]=y1;
}
}
}
if (fl) {
for (ri j(i);j<=st[tot];p(j)) fa[a[j]]=a[j],fa[a[j]+mx]=a[j]+mx,vis[a[j]]=0;
st[p(tot)]=i;
}
p(vis[a[i]]);
}
}
printf("%d\n",tot);
for (ri i(tot);i>1;--i) printf("%d ",st[i]);
puts("");
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 9 分组的更多相关文章

  1. 2018.10.02 NOIP模拟 矩阵分组(二分答案)

    传送门 考场上并不会写二分的check函数,下来看了看题解发现真是妙极. 不难想到每次直接从四个角各按阶梯状拓展出合法区域A,再检验B是否合法就行了.(然而考场上写的弃疗了) 于是题解用了一些小技巧优 ...

  2. noip模拟赛 分组

    分析:暴力分挺多,也挺好想的,个人感觉两个特殊性质没什么卵用. 对于K=1,n ≤ 1024的情况,从后往前贪心地分,如果能和上一组分在一起就分在一起,否则就再开一组,这样可以保证字典序最小.ai ≤ ...

  3. 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组

    2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...

  4. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  5. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  6. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  7. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  8. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  9. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

随机推荐

  1. HCNA Routing&Switching之动态路由协议RIP

    前文我们了解了动态路由的基本概念,以及动态路由和静态路由的区别,优缺点,动态路由的分类,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/14995317.html ...

  2. Python 操作 MySQL 的5种方式

    不管你是做数据分析,还是网络爬虫,Web 开发.亦或是机器学习,你都离不开要和数据库打交道,而 MySQL 又是最流行的一种数据库,这篇文章介绍 Python 操作 MySQL 的5种方式,你可以在实 ...

  3. navicate for mysql命令中输入中文报错

    insert into xsxx(name,xb) values('李四','男') 错误提示: [SQL]insert into xsxx3(name,xb) values('李四','男') [E ...

  4. Java之注解与反射

    Java之注解与反射 注解(Annotation)简介 注解(Annotation)是从JDK5.0引入的新技术 Annotation作用:注解(Annotation)可以被其他程序如编译器等读取 A ...

  5. 【redis前传】redis整数集为什么不能降级

    前言 整数集合相信有的同学没有听说过,因为redis对外提供的只有封装的五大对象!而我们本系列主旨是学习redis内部结构.内部结构是redis五大结构重要支撑! 前面我们分别从redis内部结构分析 ...

  6. 【动画消消乐】HTML+CSS 自定义加载动画 062

    效果展示 Demo代码 HTML <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  7. ES 基础知识点总结

    为什么使用 ES? 在传统的数据库中,如果使用某列记录某件商品的标题或简介.在检索时要想使用关键词来查询某个记录,那么是很困难的,假设搜索关键词 "小米",那么 sql 语句就是 ...

  8. 【连载】微服务网格Istio(一)

    Istio基础 服务网格是用于描述构成应用程序的微服务网络以及应用之间的交互,服务网格的功能包括服务发现.负载均衡.故障恢复.指标和监控以及更加复杂的运维工作,例如A/B测试.金丝雀发布.限流.访问控 ...

  9. JAVA web环境搭建(使用Tomcat8整合httpd)

    说明:这里是Linux服务综合搭建文章的一部分,本文可以作为单独搭建Tomcat并整合httpd的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭建综合)的顺序来做的. 如果需要查 ...

  10. shell脚本(10)-流程控制while

    一.while循环介绍 while循环与for一样,一般不知道循环次数使用for,不知道循环的次数时推荐使用while 二.while语法 while [ condition ] #条件为真才会循环, ...