题解

这道题我们发现可以根据 \(k=1\) 和 \(k=2\) 的情况分别讨论

\(k=1\) 时,我们发现要保证字典序,那么我们从后往前扫,扫的时候判断一下当前数是否会和上一段的冲突。

复杂度瓶颈就在于如何判断。我们发现 \(a_i\leq 2^{17}\) 所以 \(j*j=a_i+a_k\) 中 \(j\) 最大为 \(2^9\),所以我们可以枚举 \(j\),记录一个数组,判断一下 \(j*j-a_i\) 是否出现过

最后若分出新的一段,记得要把前一段的清空。

\(k=2\) 时,我们可以把每个数拆成两个点,分别为 \(x_1\),\(x_2\),\(y_1\),\(y_2\),让后将冲突的数连起来,发现如果其符合二分图,那么就可以分为一组。

对于判断二分图,我们可以用并查集替代。(思想

对于每个数,我们给他开一个敌人域,每次若发现冲突,但可以分成两个团体解决,那么我们将两个树的敌人域向与其发生冲突的数合并

判断时就是判断 \(x_1\) 是否和 \(y_1\) 在一个集合里。

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=(1<<17)+7;
int a[N],vis[N],st[N],fa[N<<1],fg[N<<1],n,k,tot=1,mx;
int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read(),k=read();
for (ri i(1);i<=n;p(i)) a[i]=read(),mx=cmax(mx,a[i]);
vis[a[n]]=1;st[1]=n;
if (k==1) {
for (ri i(n-1);i;--i) {
for (ri j(ceil(sqrt(a[i])));j*j-a[i]<=mx;p(j)) {
if (j*j>=a[i]&&vis[j*j-a[i]]) {
st[p(tot)]=i;
for (ri k(i+1);k<=st[tot-1];p(k)) vis[a[k]]=0;
break;
}
}
vis[a[i]]=1;
}
} else {
for (ri i(1);i<=mx;p(i)) fa[i]=i,fa[i+mx]=i+mx;
for (ri i(1);i*i<=(mx<<1);p(i)) fg[i*i]=1;
for (ri i(n-1);i;--i) {
ri fl=0;
if (vis[a[i]]) {
if (fg[a[i]<<1]) {
if (vis[a[i]]==2||fa[a[i]+mx]!=a[i]+mx) fl=1;
}
} else {
for (ri j(ceil(sqrt(a[i])));j*j-a[i]<=mx;p(j)) {
if (vis[j*j-a[i]]) {
if (fg[(j*j-a[i])<<1]&&vis[j*j-a[i]]==2) {fl=1;break;}
int x1=find(a[i]),x2=find(a[i]+mx),y1=find(j*j-a[i]),y2=find(j*j-a[i]+mx);
if (x1==y1) {fl=1;break;}
fa[y2]=x1;fa[x2]=y1;
}
}
}
if (fl) {
for (ri j(i);j<=st[tot];p(j)) fa[a[j]]=a[j],fa[a[j]+mx]=a[j]+mx,vis[a[j]]=0;
st[p(tot)]=i;
}
p(vis[a[i]]);
}
}
printf("%d\n",tot);
for (ri i(tot);i>1;--i) printf("%d ",st[i]);
puts("");
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 9 分组的更多相关文章

  1. 2018.10.02 NOIP模拟 矩阵分组(二分答案)

    传送门 考场上并不会写二分的check函数,下来看了看题解发现真是妙极. 不难想到每次直接从四个角各按阶梯状拓展出合法区域A,再检验B是否合法就行了.(然而考场上写的弃疗了) 于是题解用了一些小技巧优 ...

  2. noip模拟赛 分组

    分析:暴力分挺多,也挺好想的,个人感觉两个特殊性质没什么卵用. 对于K=1,n ≤ 1024的情况,从后往前贪心地分,如果能和上一组分在一起就分在一起,否则就再开一组,这样可以保证字典序最小.ai ≤ ...

  3. 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组

    2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...

  4. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  5. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  6. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  7. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  8. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  9. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

随机推荐

  1. 机器学习Sklearn系列:(三)决策树

    决策树 熵的定义 如果一个随机变量X的可能取值为X={x1,x2,..,xk},其概率分布为P(X=x)=pi(i=1,2,...,n),则随机变量X的熵定义为\(H(x) = -\sum{p(x)l ...

  2. 远程连接Linux上的MongoDB服务

    1.Linux环境上安装好MongoDB,并配置好环境变量 2.启动MongoDB 注:mongod /opt/michael/mongodb/mongodb-linux-x86_64-4.0.5/d ...

  3. C语言:冒泡排序例子

    //冒泡排序 //14个数字排序:14个数的组合:14*13/2=91次 理论上比较91次 ,实际只有39次进行了变量交换 #include <stdio.h> void bubble_s ...

  4. C语言:位运算符总结

    位运算符:1.指对操作数以二进制位( bit)为单位进行的数据处理2.每一个二进制位只存放0或13. 取反:~  按位反 ~ 0变1 1变0 ~1=0 ~0=14.异或: ^ 相同为0,不相同为1 1 ...

  5. Java的锁升级策略

    什么是锁? java中,synchronized永远都是锁定的一个对象,那么jvm是怎么判断一个对象是被锁定的呢. java的对象内存分布 Java的对象由对象头,对象体和填充空间(Padding)组 ...

  6. TypeScript——原始数据类型

    TypeScript原始数据类型 原始数据类型包括:布尔值.数值.字符串.null.undefined. Symbol.BigInt. 布尔值: let isDone: boolean = false ...

  7. python之数据驱动Txt操作

    一.新建数据Mail163.txt文本 二.Txt_Mail163.py脚本如下: import unittestfrom selenium import webdriverfrom selenium ...

  8. 微信小程序云开发-云存储-上传、下载、打开文件文件(word/excel/ppt/pdf)一步到位

    一.wxml文件 <!-- 上传.下载.打开文件一步执行 --> <view class="handle"> <button bindtap=&quo ...

  9. 在线体验 Windows 11「GitHub 热点速览 v.21.30」

    作者:HelloGitHub-小鱼干 有什么比无需安装系统,检测硬件兼容度,只要打开一个浏览器,输入某个神秘的地址回车,即可体验 Windows 11 更棒的呢?windows11 就是这么一个小工具 ...

  10. Innodb 锁的介绍

    如下博文是参考如下博文内容,再加整理. http://blog.chinaunix.net/uid-24111901-id-2627857.html http://blog.csdn.net/wang ...