粒子群优化算法—Matlab
PSO算法
clc;
clear ;
close ;
%% Problem Definition CostFunction = @(x) sphere(x); % Cost Function nVar = 5; % Dimension of Decision Variables VarSize = [1,nVar]; % Matrix Size of Decision Variables VarMin = -10; % Lower Bound of Decision Variables
VarMax = 10; % Upper Bound of Decision Variables %% Parameters of PSO MaxIt = 1000; % Maximum Number of Iterations nPop = 50; % Population Size w = 1; % Inertia Coefficient
wdamp = 0.81; % Damping Ratio of Inertia Coefficient
c1 = 2; % Personal Acceleration Coefficient
c2 = 2; % Social Acceleration Coefficient %% Initialization % The Patticle Template
empty_partical.Position = [];
empty_partical.Velocity = [];
empty_partical.Cost = [];
empty_partical.Best.Position = [];
empty_partical.Best.Cost = []; % Create Population Array
particle = repmat(empty_partical,nPop,1); % Initialize Global Best
GlobalBest.Cost = inf; % Iniitialize Population Members
for i=1:nPop % Generate Random Solution
particle(i).Position = unifrnd(VarMin,VarMax,VarSize); % Initialize Velocity
particle(i).Velocity = zeros(VarSize); % Evaluation
particle(i).Cost = CostFunction(particle(i).Position); % Update the Personal Best
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost; % Update Global Best
if particle(i).Best.Cost < GlobalBest.Cost
GlobalBest = particle(i).Best;
end end % Array to Hold Best Cost Value
BestCosts = zeros(MaxIt,1); %% Main Loop of PSO for it=1:MaxIt for i=1:nPop % Update Velocity
particle(i).Velocity = w*particle(i).Velocity ...
+ c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position)...
+ c2*rand(VarSize).*(GlobalBest.Position - particle(i).Position);
% Update Position
particle(i).Position = particle(i).Position + particle(i).Velocity; % Evaluation
particle(i).Cost = CostFunction( particle(i).Position); % Update Personal Best
if particle(i).Cost < particle(i).Best.Cost particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost; % Update Global Best
if particle(i).Best.Cost < GlobalBest.Cost
GlobalBest = particle(i).Best;
end end end % Store the Best Cost Value
BestCosts(it) = GlobalBest.Cost; % Display Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]); % Damping Inertia Coefficient
w = w * wdamp; end %% Results figure;
plot(BestCosts,'LineWidth',2);
semilogy(BestCosts,'LineWidth',2);
xlabel('Iterations');
ylabel('Best Cost');
grid on;
测试函数
function z = sphere(x)
%% 目标函数
z = sum(x.^2);
end
粒子群优化算法—Matlab的更多相关文章
- 粒子群优化算法PSO及matlab实现
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...
- MATLAB粒子群优化算法(PSO)
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optim ...
- 粒子群优化算法对BP神经网络优化 Matlab实现
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- 计算智能(CI)之粒子群优化算法(PSO)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...
- 数值计算:粒子群优化算法(PSO)
PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...
随机推荐
- .NET 开源免费图表组件库,Winform,WPF 通用
大家好, 我是等天黑, 今天给大家介绍一个功能完善, 性能强悍的图表组件库 ScottPlot, 当我第一次在 github 上看到这个库, 我看不懂,但我大受震撼, 这么好的项目当然要分享出来了. ...
- Codeforces 1264D - Beautiful Bracket Sequence(组合数学)
Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...
- 曼哈顿距离最小生成树 codechef Dragonstone
曼哈顿距离最小生成树 codechef Dragonstone 首先,对于每一个点来说有用的边只有它向它通过 x=0,y=0,y=x,y=-x 切出来的八个平面的最近点. 证明 我不会 反正当结论记住 ...
- 洛谷 P4646 - [IOI2007] flood 洪水(拆点+bfs)
题面传送门 一道挺有意思的题(?) orz djq yyds %%%%%%%%%%%%%%%%%% 首先一个很直观的想法是将每个房间看作一个节点,在有墙的房间旁边连边权为 \(1\) 的边然后 bfs ...
- snpEff注释结果各区域统计之和大于变异总数?
目录 问题一:各区域注释之和大于变异总数? 问题二:注释Region出现Gene和transcript等区域? 问题一:各区域注释之和大于变异总数? snpEff的结果很简单,但常常遇到如下问题. 我 ...
- Python——MacBook Pro中安装pip
1.系统已有python2和python3,如何检查MacBook Pro系统是否安装的有pip? 看到terminal的提示没有,有提示pip的,下面的提示,说明pip安装了. 要查看pip3是否安 ...
- pyyaml模块
pyyaml模块是一种文件数据处理格式的方法,常用与生成.解析或修改.yaml配置文件 1.常见.yaml文件格式内容如下 languages: - Ruby - Perl - Python webs ...
- python2 第二天
requests库 编码和解码 输入和输出,在Python中,为了更好的调试和输出,我们需要对字符串进⾏格式化的输出,⽐如我们定义了姓名和年龄,但是我 们需要输出完整的信息,那么就涉及到字符串格式化的 ...
- Swift-技巧(十一)重写运算符
摘要 基础数据的运算可以直接使用四则运算符.在 Swift 中也可以通过重写四则运算符的方式,让 struct 或者 class 创建的结构体或者对象也能像基础数据那样直接使用四则运算符. Swift ...
- Docker快速上手入门
Docker 什么是Docker? Docker就是一种虚拟化的技术 可以通过Docker快速的下载使用第三方技术,方便搭建环境 目的:Securely build,share and run any ...