混合高斯模型和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。
与k-means一样,给定的训练样本是
,我们将隐含类别标签用
表示。与k-means的硬指定不同,我们首先认为
是满足一定的概率分布的,这里我们认为满足多项式分布,
,其中
,
有k个值{1,…,k}可以选取。而且我们认为在给定
后,
满足多值高斯分布,即
。由此可以得到联合分布
。
整个模型简单描述为对于每个样例
,我们先从k个类别中按多项式分布抽取一个
,然后根据
所对应的k个多值高斯分布中的一个生成样例
,。整个过程称作混合高斯模型。注意的是这里的
仍然是隐含随机变量。模型中还有三个变量
和
。最大似然估计为
。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的
,那么上式可以简化为:

这时候我们再来对
和
进行求导得到:

就是样本类别中
的比率。
是类别为j的样本特征均值,
是类别为j的样例的特征的协方差矩阵。
实际上,当知道
后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。
之前我们是假设给定了
,实际上
是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:
|
循环下面步骤,直到收敛: { (E步)对于每一个i和j,计算
(M步),更新参数:
} |
在E步中,我们将其他参数
看作常量,计算
的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,
值又不对了,需要重新计算,周而复始,直至收敛。
的具体计算公式如下:

这个式子利用了贝叶斯公式。
这里我们使用
代替了前面的
,由简单的0/1值变成了概率值。
对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别
是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。
虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。
混合高斯模型和EM算法的更多相关文章
- 混合高斯模型和EM
<统计学习方法>这本书上写的太抽象,可参考这位大神的:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html
- 高斯混合模型和EM算法
使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k- ...
- 最大熵模型和EM算法
一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督 ...
- 高斯混合模型的EM算法
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...
- SIGAI机器学习第二十三集 高斯混合模型与EM算法
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期 ...
- 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...
- 机器学习之高斯混合模型及EM算法
第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...
- 机器学习基础知识笔记(一)-- 极大似然估计、高斯混合模型与EM算法
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p( ...
- 聚类之高斯混合模型与EM算法
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为 ...
随机推荐
- Java中循环删除list中元素的方法总结
印象中循环删除list中的元素使用for循环的方式是有问题的,但是可以使用增强的for循环,然后在今天使用的时候发现报错了,然后去科普了一下,发现这是一个误区.下面我们来一起看一下. Java中循环遍 ...
- 在Eclipse中运行hadoop程序
1.下载hadoop-eclipse-plugin-1.2.1.jar,并将之复制到eclipse/plugins下. 2.打开map-reduce视图 在eclipse中,打开window--> ...
- 利用JavaScript 的formdata 进行无刷新上传文件
<html> <head> <title></title> <script type=&quo ...
- php的一些小笔记-文件函数(1)
---恢复内容开始--- 与文件操作相关的函数有一部分可以和linux命令比较,但是我觉得可能还是linux上使用的比较频繁 如:chown,chmod,chgrp,rename,touch,link ...
- kafka文档翻译(一)
原文来自(http://kafka.apache.org/documentation.html) 本文只做简单的翻译,水平有限,仅供学习交流使用 如有错误,欢迎点评指正 1 准备开始 1.1 介绍 ...
- [jumping to the gate] 娱乐向setjmp
转载:http://tieba.baidu.com/p/1393753521 灌水的时候从goto一路拐到了setjmp, 顺便也试了试貌似这东西确实是没有析构效果的.之前并没有看过setjmp的实现 ...
- 关于BitmapFactory.decodeStream(is)方法无法正常解码为Bitmap对象的解决方法
在android sdk 1.6版本API帮助文档中,其中关于BitmapFactory.decodeFactory.decodeStream(InputStream is)的帮助文档是这么说明的: ...
- Android学习笔记__3__Android应用程序组成
Android开发必须要了解构造块,Android应用程序是由里有六个重要组成部分组成的,这六种构造块如下: ◆Activity ◆Intent Receiver ◆Service ◆Content ...
- c#图像处理入门
一.Bitmap类 Bitmap对象封装了GDI+中的一个位图,此位图由图形图像及其属性的像素数据组成.因此Bitmap是用于处理由像素数据定义的图像的对象.该类的主要方法和属性如下: 1. GetP ...
- Git源码管控规范
Git分支示意圖 Master:主分支.形成稳定的版本时,才将代码合并到Master分支 Relase:网站发布的分支.通过验证的Bug和功能需求,才合并到Release分支,并将稳定的版本进行备份 ...

