Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for  or more (up to ) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where  ≤ n ≤ . After this will be n +  lines each containing n +  integers indicating the times to travel between the pizzeria (numbered ) and the n locations (numbers  to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n =  will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input


Sample Output


Source

 
inf开太大竟然WA了!!!

【题目大意】类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。求最短距离。

【解析】可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过

【状态表示】dp[state][i]表示到达i点状态为state的最短距离

【状态转移方程】dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离

【DP边界条件】dp[state][i] =dis[0][i]  state是只经过i的状态

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define M 1<<N
#define inf 1<<26
int n;
int mp[N][N];
void flyod(){
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
}
int dp[M][N];
int main()
{
while(scanf("%d",&n)==){
if(n==)
break; for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&mp[i][j]);
}
}
flyod(); //int m=1<<n;
//memset(dp,inf,sizeof(dp));
for(int S=;S<(<<n);S++){//i表示状态
for(int i=;i<=n;i++){
if(S&(<<(i-))){
if(S==(<<(i-))){
dp[S][i]=mp[][i];
}
else{
dp[S][i]=(int)inf;
for(int j=;j<=n;j++){
if(S&(<<(j-)) && j!=i){
dp[S][i]=min(dp[S][i],dp[S^(<<(i-))][j]+mp[j][i]);
}
}
}
}
}
}
int ans=dp[(<<n)-][]+mp[][];
for(int i=;i<=n;i++){
ans=min(ans,dp[(<<n)-][i]+mp[i][]);
}
printf("%d\n",ans);
}
return ;
}

无耻地贴上大神的代码

 #include<iostream>
#define INF 100000000
using namespace std;
int dis[][];
int dp[<<][];
int n,ans,_min;
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) && n)
{
for(int i = ;i <= n;++i)
for(int j = ;j <= n;++j)
scanf("%d",&dis[i][j]);
for(int k = ;k <= n;++k)
for(int i = ;i <= n;++i)
for(int j = ;j <=n;++j)
if(dis[i][k] + dis[k][j]< dis[i][j])
dis[i][j] = dis[i][k] +dis[k][j]; for(int S = ;S <= (<<n)-;++S)//枚举所有状态,用位运算表示
for(int i = ;i <= n;++i)
{
if(S & (<<(i-)))//状态S中已经过城市i
{
if(S ==(<<(i-))) dp[S][i] =dis[][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界
else//如果S有经过多个城市
{
dp[S][i] = INF;
for(int j = ;j <=n;++j)
{
if(S &(<<(j-)) && j != i)//枚举不是城市I的其他城市
dp[S][i] =min(dp[S^(<<(i-))][j] + dis[j][i],dp[S][i]);
//在没经过城市I的状态中,寻找合适的中间点J使得距离更短
}
}
}
}
ans = dp[(<<n)-][] + dis[][];
for(int i = ;i <= n;++i)
if(dp[(<<n)-][i] + dis[i][] < ans)
ans = dp[(<<n)-][i] +dis[i][];
printf("%d\n",ans);
}
return ;
}

poj 3311 Hie with the Pie(状态压缩dp)的更多相关文章

  1. poj3311 Hie with the Pie (状态压缩dp,旅行商)

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3160   Accepted: 1613 ...

  2. POJ 3311 Hie with the Pie (状压DP)

    dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...

  3. POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

    题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...

  4. POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)

    题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...

  5. poj 3311 Hie with the Pie

    floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Me ...

  6. POJ 3311 Hie with the Pie(状压DP + Floyd)

    题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...

  7. POJ 3311 Hie with the Pie floyd+状压DP

    链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...

  8. poj 3311 Hie with the Pie (TSP问题)

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4491   Accepted: 2376 ...

  9. POJ 3311 Hie with the Pie 最短路+状压DP

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11243   Accepted: 5963 ...

随机推荐

  1. 程序员求职之道(《程序员面试笔试宝典》)之求职有用网站及QQ群一览表

    技术学习网站 www.csdn.com www.iteye.com www.51cto.com http://www.cnblogs.com/ http://oj.leetcode.com/ http ...

  2. hdu 5427 A problem of sorting(字符排序)

    Problem Description There are many people's name and birth in a list.Your task is to print the name ...

  3. VS2008找不到MFC90d.dll错误解决方法

    问题是在更新嵌入的清单文件时发生的,由于FAT32的原因而未能更新嵌入的清单文件,于是我们有如下两种解决方法: (1)不启用增量链接.在项目的“属性|配置属性|链接器|常规”中的“启用增量链接”选择“ ...

  4. boost::asio译文

        Christopher Kohlhoff Copyright © 2003-2012 Christopher M. Kohlhoff 以Boost1.0的软件授权进行发布(见附带的LICENS ...

  5. [CSAPP笔记][第一章计算机系统漫游]

    计算机系统漫游 我们通过追踪hello程序的生命周期来开始对系统的学习—–从它被程序员创建,到系统上运行,输出简单的消息,然后终止.我们沿着这个程序的生命周期,简要介绍一些逐步出现的概念,专业术语和组 ...

  6. Javascript进阶篇——( JavaScript内置对象---下)--Math对象---笔记整理

    Math对象使用 Math 的属性和方法: <script type="text/javascript"> var mypi=Math.PI; var myabs=Ma ...

  7. 前端判断用户请求是PC还是移动端

    链接:https://www.zhihu.com/question/20004700/answer/13678113 第一步先在服务器端使用User Agent判断,先匹配出移动设备,这一步可以统计U ...

  8. volley三种基本请求图片的方式与Lru的基本使用:正常的加载+含有Lru缓存的加载+Volley控件networkImageview的使用

    首先做出全局的请求队列 package com.qg.lizhanqi.myvolleydemo; import android.app.Application; import com.android ...

  9. 关于用Java写的贪吃蛇游戏的一些感想

    学习Java有那么一个月了,兴趣还是挺高的.然而最近老师布置的一个迷宫问题,着实让我头疼了一两个礼拜,以至于身心疲惫,困扰不安.无奈,暂且先放下这个迷宫问题,写个简单点的贪吃蛇程序,以此来提高低落的情 ...

  10. 关于取数组地址的识记(&s+1,s+1,&s[0]+1)

    #include <stdio.h> #include <malloc.h> int main() { ', 'o'}; ); printf(]); ]+); printf(] ...