poj 3311 Hie with the Pie(状态压缩dp)
Description
The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for or more (up to ) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.
Input
Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where ≤ n ≤ . After this will be n + lines each containing n + integers indicating the times to travel between the pizzeria (numbered ) and the n locations (numbers to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = will terminate input.
Output
For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.
Sample Input
Sample Output
Source
【题目大意】类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。求最短距离。
【解析】可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过
【状态表示】dp[state][i]表示到达i点状态为state的最短距离
【状态转移方程】dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离
【DP边界条件】dp[state][i] =dis[0][i] state是只经过i的状态
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define M 1<<N
#define inf 1<<26
int n;
int mp[N][N];
void flyod(){
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
}
int dp[M][N];
int main()
{
while(scanf("%d",&n)==){
if(n==)
break; for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&mp[i][j]);
}
}
flyod(); //int m=1<<n;
//memset(dp,inf,sizeof(dp));
for(int S=;S<(<<n);S++){//i表示状态
for(int i=;i<=n;i++){
if(S&(<<(i-))){
if(S==(<<(i-))){
dp[S][i]=mp[][i];
}
else{
dp[S][i]=(int)inf;
for(int j=;j<=n;j++){
if(S&(<<(j-)) && j!=i){
dp[S][i]=min(dp[S][i],dp[S^(<<(i-))][j]+mp[j][i]);
}
}
}
}
}
}
int ans=dp[(<<n)-][]+mp[][];
for(int i=;i<=n;i++){
ans=min(ans,dp[(<<n)-][i]+mp[i][]);
}
printf("%d\n",ans);
}
return ;
}
无耻地贴上大神的代码
#include<iostream>
#define INF 100000000
using namespace std;
int dis[][];
int dp[<<][];
int n,ans,_min;
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) && n)
{
for(int i = ;i <= n;++i)
for(int j = ;j <= n;++j)
scanf("%d",&dis[i][j]);
for(int k = ;k <= n;++k)
for(int i = ;i <= n;++i)
for(int j = ;j <=n;++j)
if(dis[i][k] + dis[k][j]< dis[i][j])
dis[i][j] = dis[i][k] +dis[k][j]; for(int S = ;S <= (<<n)-;++S)//枚举所有状态,用位运算表示
for(int i = ;i <= n;++i)
{
if(S & (<<(i-)))//状态S中已经过城市i
{
if(S ==(<<(i-))) dp[S][i] =dis[][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界
else//如果S有经过多个城市
{
dp[S][i] = INF;
for(int j = ;j <=n;++j)
{
if(S &(<<(j-)) && j != i)//枚举不是城市I的其他城市
dp[S][i] =min(dp[S^(<<(i-))][j] + dis[j][i],dp[S][i]);
//在没经过城市I的状态中,寻找合适的中间点J使得距离更短
}
}
}
}
ans = dp[(<<n)-][] + dis[][];
for(int i = ;i <= n;++i)
if(dp[(<<n)-][i] + dis[i][] < ans)
ans = dp[(<<n)-][i] +dis[i][];
printf("%d\n",ans);
}
return ;
}
poj 3311 Hie with the Pie(状态压缩dp)的更多相关文章
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- POJ 3311 Hie with the Pie (状压DP)
dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...
- POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...
- POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)
题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...
- poj 3311 Hie with the Pie
floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS Me ...
- POJ 3311 Hie with the Pie(状压DP + Floyd)
题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...
- POJ 3311 Hie with the Pie floyd+状压DP
链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...
- poj 3311 Hie with the Pie (TSP问题)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4491 Accepted: 2376 ...
- POJ 3311 Hie with the Pie 最短路+状压DP
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11243 Accepted: 5963 ...
随机推荐
- 学习javascript基础知识系列第三节 - ()()用法
总目录:通过一段代码学习javascript基础知识系列 注意: 为了便于执行和演示,建议使用chrome浏览器,按F12,然后按Esc(或手动选择)打开console,在console进行执行和演示 ...
- Javascript 中的变量
var a; console.log("The value of a is " + a); // The value of a is undefined console.log(& ...
- c++之 数组
数组的定义 数组用于表示一组数值,例如: char arr[5]; 其中,arr称为"数组变量",简称"数组".它表示5个char型数据,我们把每一个数据称为一 ...
- DM6437 dsp系列之启动过程全析(2)—AIS文件解析
本文均属自己阅读源码的点滴总结,转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email: gzzaigcn2009@163.com,gzzaigcn2012@gmail.com ...
- linux经常使用命令:打包、复制等
备份文件 tar -cf /home/app20140703bak.tar /home/app/uat/test.war 拷贝文件到目标目录 例示: cp -af /app/wasapp/appnam ...
- 2014 (多校)1011 ZCC Loves Codefires
自从做了多校,整个人都不好了,老是被高中生就算了,题老是都不懂=-=原谅我是个菜鸟,原谅我智力不行.唯一的水题. Problem Description Though ZCC has many Fan ...
- [Hapi.js] POST and PUT request payloads
hapi makes handling POST and PUT payloads easy by buffering and parsing them automatically without r ...
- Java内存区域和GC机制篇
Java内存区域和GC机制一.目录 1.Java垃圾回收概括 2.Java内存区域 3.Java对象的访问方式 4.Java内存访问机制 5.Java GC 机制 6.Java垃圾收集器 二.Java ...
- ios开发 block语句块
ios开发 block语句块 1.block 理解为匿名函数 2.block变量的定义 //定义block变量,^表示定义block //技巧:函数名左右加括号,在函数名前面在加^ void (^bl ...
- perl6的介绍与下载编译安装
遇到perl6 一直想认真的学习一门脚本语言或者与之类似的语言,因为相对与c++/c来说,一些工作可以很方便的用脚本语言来解决,比如对于日志文件的处理,自动ftp上传. 也看过不少语言的介绍,比如py ...