poj 3311 Hie with the Pie(状态压缩dp)
Description
The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for or more (up to ) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.
Input
Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where ≤ n ≤ . After this will be n + lines each containing n + integers indicating the times to travel between the pizzeria (numbered ) and the n locations (numbers to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = will terminate input.
Output
For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.
Sample Input
Sample Output
Source
【题目大意】类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。求最短距离。
【解析】可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过
【状态表示】dp[state][i]表示到达i点状态为state的最短距离
【状态转移方程】dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离
【DP边界条件】dp[state][i] =dis[0][i] state是只经过i的状态
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define M 1<<N
#define inf 1<<26
int n;
int mp[N][N];
void flyod(){
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
}
int dp[M][N];
int main()
{
while(scanf("%d",&n)==){
if(n==)
break; for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&mp[i][j]);
}
}
flyod(); //int m=1<<n;
//memset(dp,inf,sizeof(dp));
for(int S=;S<(<<n);S++){//i表示状态
for(int i=;i<=n;i++){
if(S&(<<(i-))){
if(S==(<<(i-))){
dp[S][i]=mp[][i];
}
else{
dp[S][i]=(int)inf;
for(int j=;j<=n;j++){
if(S&(<<(j-)) && j!=i){
dp[S][i]=min(dp[S][i],dp[S^(<<(i-))][j]+mp[j][i]);
}
}
}
}
}
}
int ans=dp[(<<n)-][]+mp[][];
for(int i=;i<=n;i++){
ans=min(ans,dp[(<<n)-][i]+mp[i][]);
}
printf("%d\n",ans);
}
return ;
}
无耻地贴上大神的代码
#include<iostream>
#define INF 100000000
using namespace std;
int dis[][];
int dp[<<][];
int n,ans,_min;
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) && n)
{
for(int i = ;i <= n;++i)
for(int j = ;j <= n;++j)
scanf("%d",&dis[i][j]);
for(int k = ;k <= n;++k)
for(int i = ;i <= n;++i)
for(int j = ;j <=n;++j)
if(dis[i][k] + dis[k][j]< dis[i][j])
dis[i][j] = dis[i][k] +dis[k][j]; for(int S = ;S <= (<<n)-;++S)//枚举所有状态,用位运算表示
for(int i = ;i <= n;++i)
{
if(S & (<<(i-)))//状态S中已经过城市i
{
if(S ==(<<(i-))) dp[S][i] =dis[][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界
else//如果S有经过多个城市
{
dp[S][i] = INF;
for(int j = ;j <=n;++j)
{
if(S &(<<(j-)) && j != i)//枚举不是城市I的其他城市
dp[S][i] =min(dp[S^(<<(i-))][j] + dis[j][i],dp[S][i]);
//在没经过城市I的状态中,寻找合适的中间点J使得距离更短
}
}
}
}
ans = dp[(<<n)-][] + dis[][];
for(int i = ;i <= n;++i)
if(dp[(<<n)-][i] + dis[i][] < ans)
ans = dp[(<<n)-][i] +dis[i][];
printf("%d\n",ans);
}
return ;
}
poj 3311 Hie with the Pie(状态压缩dp)的更多相关文章
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- POJ 3311 Hie with the Pie (状压DP)
dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...
- POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...
- POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)
题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...
- poj 3311 Hie with the Pie
floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS Me ...
- POJ 3311 Hie with the Pie(状压DP + Floyd)
题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...
- POJ 3311 Hie with the Pie floyd+状压DP
链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...
- poj 3311 Hie with the Pie (TSP问题)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4491 Accepted: 2376 ...
- POJ 3311 Hie with the Pie 最短路+状压DP
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11243 Accepted: 5963 ...
随机推荐
- 详解JavaScript中的Object对象
Object是在javascript中一个被我们经常使用的类型,而且JS中的所有对象都是继承自Object对象的.虽说我们平时只是简单地使用了Object对象来存储数据,并没有使用到太多其他功能,但是 ...
- 04747_Java语言程序设计(一)_第9章_输入和输出流
例9.1一个文件复制应用程序,将某个文件的内容全部复制到另一个文件. import java.io.*; public class Example9_1 { public static void ma ...
- ajax的封装
ajax是前端工程中与后台进行数据交互的一门重要技术,通过在后台与服务器进行少量数据交换,AJAX 可以使网页实现异步更新.这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新.jquer ...
- PHP <<EOF EOF的使用方法
PHP <<EOF EOF的使用方法 <?php $name = '浅水游'; print <<<EOT <html& ...
- Python 线程(threading) 进程(multiprocessing)
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- html表格,列表
1. 表格由 <table> 标签来定义.每个表格均有若干行(由 <tr> 标签定义),每行被分割为若干单元格(由 <td> 标签定义).字母 td 指表格数据(t ...
- jquery动态添加DOM节点
1.append()方法:向每个匹配的元素内部添加元素 appendTo()方法:将所有匹配的元素追加的指定的元素中 <html> <head> <meta http-e ...
- UGUI学习之InputField
密码框在Context type 设置为Passwold 设置背景和调整字体颜色与透明度. 还有一个就是Toggle,(开关)要指定他的Graphic.
- Struts2学习笔记 国际化(Internationalization)
概述 国际化(Internationalization),通途的讲,就是让软件实现对多种语言的支持.可以通过简单的设置就可以从一种语言切换到另一种语言.用的最多的地方就是在应用程序的界面表示上.我们经 ...
- 基于VMware的eCos环境编译redboot(脚本配置redboot)
基于VMware的ecos,redboot及hello world(1)安装请参照[[ecos学习2]wmware运行redboot[方法二]--图形实现配置 ] (2)修改内存布局文件:~/i386 ...