小希的迷宫

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41540    Accepted Submission(s): 12811

Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
 
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
 
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
 
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0

8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0

3 8 6 8 6 4
5 3 5 6 5 2 0 0

-1 -1

 
Sample Output
Yes
Yes
No
代码:

/*
   hdu1272并查集入门题目
   题目大意:构造一个图,你来判断构造的图是否满足小希的要求
   思路:用并查集,首先是是否连通的判断,可以采用对于无向连通图
   顶点数==边数+1来进行判断,也可以用并查集,因为整个图如果是连通的
   那么最后所有点肯定是有一个相同的根节点
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int M = 100005;
int a,b;
int father[M];       //记录父节点
bool circle;         //判断是否存在环
bool visit[M];       //用来记录顶点数
int edgenum,vnum;    //分别表示边数,顶点数
void initial()//完成初始化
{
     for( int i=0 ; i<M ; i++ )
          father[i] = i,visit[i]=false;
     circle = false;
     edgenum = vnum = 0;
}

int find(  int x )
{
    return x == father[x] ? x : father[x] = find(father[x]);     //找祖先节点 + 路径压缩
}

void merge( int a ,int b )
{
     if( a == b )
         circle = true;//自身成环,算是剪枝
     int x , y;
     x = find(a);//寻找祖先节点
     y = find(b);
     if( x != y ){
         father[x] = y;
         edgenum++;       //引出一条边
     }
     else
         circle = true;   //x==y,说明他们是同一个祖先,一旦连通便与祖先3者成环
}

int main()
{
    while( true ){
           initial( );
           scanf("%d%d",&a,&b);
           if( a==0 && b==0 ){     //为空树,符合题目要求,输出yes
               printf("Yes\n");
               continue;
           }
           if( a==-1 && b==-1 )
               break;
           visit[a] = true;//标记a点和b点
           visit[b] = true;
           merge( a,b );
           while( true ){
                  scanf("%d%d",&a,&b);
                  if( a==0 && b==0 )
                      break;
                  visit[a] = true;
                  visit[b] = true;
                  merge( a , b );
           }
           for( int i=0 ; i<M ; i++ )
                if( visit[i] )//统计顶点数目
                    vnum++;
           if( vnum==edgenum+1&&!circle )
               printf("Yes\n");
           else
               printf("No\n");
    }
    return 0;
}

hdu1272并查集入门的更多相关文章

  1. 并查集入门--畅通工程(HDU1232)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 畅通工程 Time Limit: 4000/2000 MS (Java/Others)    M ...

  2. hdu-1272 并查集

    Problem Description 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该 ...

  3. 小希的迷宫(hdu1272 并查集)

    http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=259#problem/D Description 上次Gardon的迷宫城堡小希 ...

  4. 并查集——poj2492(带权并查集入门)

    一.题目回顾 题目链接:传送门 题意:给定n只虫子,不同性别的可以在一起,相同性别的不能在一起.给你m对虫子,判断中间有没有同性别在一起的. 二.解题思路 种类并查集 和poj1073的本质一样 详见 ...

  5. 并查集——poj1703(带权并查集入门)

    传送门:Find them, Catch them 题意:警察抓获N个罪犯,这些罪犯只可能属于两个团伙中的一个,现在给出M个条件(D a b表示a和b不在同一团伙),对于每一个询问(A a b)确定a ...

  6. HDU1213:How Many Tables(并查集入门)

    -----------刷点水题练习java------------- 题意:给定N点,M边的无向图,问有多少个连通块. 思路:可以搜索;  可以并查集.这里用并查集练习java的数组使用,ans=N, ...

  7. 并查集入门(hdu1232“畅通工程”)

    在学习并查集之前,首先需要明白基本的并查集可以完成的功能.并查集主要是用于处理不相交集合的合并问题.它是一种基础算法,在离散数学中,可以利用并查集求一个图的连通分支,利用其这个特性可以为我们解决一系列 ...

  8. POJ1611 && POJ2524 并查集入门

    The Suspects Time Limit: 1000MS   Memory Limit: 20000K Total Submissions: 28293   Accepted: 13787 De ...

  9. hdu1272 并查集

    如果要输出yes 需要满足 1  这个图连通 2  没有回路 3  0 0 也是yes 看它有没有回路 在un的时候做一次判断就可以了 然后是判断连通 在这里采用的方法是扫一遍 如果这个点出现过就判断 ...

随机推荐

  1. oc 多线程UI更新

    1.在子线程中是不能进行UI 更新的,而可以更新的结果只是一个幻像:因为子线程代码执行完毕了,又自动进入到了主线程,执行了子线程中的UI更新的函数栈,这中间的时间非常的短,就让大家误以为分线程可以更新 ...

  2. css3画苹果logo

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  3. 必须声明标量变量 "@cid"。

    出错代码: public bool Delete_List(int cID) { StringBuilder strSql = new StringBuilder(); strSql.Append(& ...

  4. NET Core依赖注入解读&使用Autofac替代实现

    NET Core依赖注入解读&使用Autofac替代实现 标签: 依赖注入 Autofac ASPNETCore ASP.NET Core依赖注入解读&使用Autofac替代实现 1. ...

  5. 手把手教你发布代码到CocoaPods(Trunk方式)-备用

    概述 关于CocoaPods的介绍不在本文的主题范围内,如果你是iOS开发者却不知道CocoaPods,那可能要面壁30秒了.直奔主题,这篇文章主要介绍如果把你的代码发布到CocoaPods代码库中, ...

  6. KEIL中的一些细节

    1.KEIL中的指针: 基于存储器的指针:数据类型 [指向存储区]  *[ 指针存储区]指针变量 char xdata * px //px本身存在于自动分配的空间,一般位于data中,指向的内容位于x ...

  7. qt实现头像上传功能(写了4个类,朝十晚八的博客,非常好)

    想必大家都使用过qt的自定义头像功能吧,那么图1应该不会陌生,本片文章我就是要模拟一个这样的功能,虽然没有这么强大的效果,但是能够满足一定的需求. 图1 qq上传图片 首先在讲解功能之前,我先给出一片 ...

  8. netcat

    一.概述 netcat是网络工具中的瑞士军刀,它能通过TCP和UDP在网络中读写数据.通过与其他工具结合和重定向,你可以在脚本中以多种方式使用它.使用netcat命令所能完成的事情令人惊讶.netca ...

  9. Linux企业级项目实践之网络爬虫(21)——扩展为多任务爬虫

    高效的网络爬虫是搜索引擎的重要基础.采用多任务并发执行,实现类似于CPU的流水线(pipeline)运行方式,可极大地提高网络和计算资源的利用率等性能. #include "threads. ...

  10. vs2008包加载失败

    由于安装vs2008sp1后,新建项目报错,解决未遂,于是重装vs2008,装完后又出现包加载失败问题: Microsoft.Data.Entity.Design.Package.MicrosoftD ...