CONTINUOUS RANDOM VARIABLES AND PDFS 

连续的随机变量,顾名思义。就是随机变量的取值范围是连续的值,比如汽车的速度。气温。假设我们要利用这些參数来建模。那么就须要引入连续随机变量。

假设随机变量X是连续的,那么它的概率分布函数能够用一个连续的非负函数来表示,这个非负函数称作连续随机变量的概率密度函数(probability density function)。并且满足:

假设B是一个连续的区间,那么:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" alt="">

要注意的是不论什么一个点的概率是等于零的,由于:

所以对与表示概率时的大于等于。小于等于能够等同于大于和小于:

概率密度函数除了非零这个条件外,另一个条件。依据概率三公理之中的一个的normalization,连续随机变量的总概率等于1:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="65" alt="">

为了直观的理解连续随机变量的概率是什么,例如以下图,连续随机变量在某个区间发生的概率等于该变量概率密度函数在该区间下的面积,如图阴影部分:

所以。对于连续随机变量在区间δ发生的概率为:

直观的表演示样例如以下:

Expectation

连续随机变量X的期望值公式例如以下。就是将离散随机变量中的求和改为了积分:



 

对于随即变量x的函数。其期望值例如以下:



方差例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" alt="">

and:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" alt="">

同理离散随机变量,连续随机变量也符合线性原则:

CUMULATIVE
DISTRIBUTION FUNCTIONS 

随机变量的累计概率是指,P(X ≤ x)的概率。表演示样例如以下:

连续随机变量有下面性质:

-单调非递减性:

-FX(x)趋近于0当x趋近于负无穷,FX(x)趋近于1当x趋近于正无穷。

-假设x是离散随机变量。那么FX(x)呈阶梯状上升。假设x是连续随机变量,那么FX(x)呈连续变化上升状。下图分别为离散和连续随机变量的CDF。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="160" alt="">

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="160" alt="">

-假设x是离散随机变量,那么它的PMF能够通过CDF相减得到,CDF能够通过对PMF相加得到:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="80" alt="">

-假设x是连续随机变量,那么它的CDF能够通过对PDF做定积分得到,PDF能够通过对CDF微分得到。

NORMAL RANDOM VARIABLES

正态分布的PDF表演示样例如以下:

μ 是随机变量X的期望,即均值。σ 是随机变量X的标准差。所以方差为σ2

正态分布也满足概率和为一的定理:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" alt="">

其PDF和CDF例如以下图所看到的(均值为1,方差为1的正态分布):

当然,正态分布也满足连续随机变量的一般性质:

The Standard Normal Random Variable

标准正态分布是指均值为0,标准差为1的正态分布。它的CDF能够表示为,它的经常使用值被做成了表以供查找:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="70" alt="">

假设Y等于:,那么我们能够将不熟悉的Y转变成X再做计算。公式例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="34" alt="">

CONDITIONING ON AN EVENT

连续随机变量X与事件A的条件概率表演示样例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" alt="">

类似离散随机变量的条件概率公式,连续随机变量的条件概率例如以下:

连续随机变量X的期望:

对于X的函数g(x)的期望:

相对于离散函数的total probability,连续随机变量也有:

MULTIPLE CONTINUOUS RANDOM VARIABLES

两个连续随机变量的联合分布表演示样例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" alt="">

相同要注意的是f(x,y)是非负的函数。对于一定区间的x,y的概率表演示样例如以下:

像一个随机变量的一样,两个随机变量的PDF满足:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" alt="">

为了直观的了解两个随机变量的概念,令:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="50" alt="">

假设δ无限小,那么双随机变量的概率就相当于是函数f(x,y)在δ2 覆盖下的体积。

连续随机变量的边际概率等于。与离散随机变量的求和相应的是积分:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" alt="">

Expectation

两个随机变量的期望等于:

且有:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" alt="">

Conditioning One Random Variable on Another

X,Y是连续随机变量。其联合分布为:fX,Y,  X相对于Y的条件概率为:

条件概率也满足normalization的公式:

期望和条件概率的期望例如以下:

Inference and the Continuous Bayes’ Rule

对于连续的随机变量,也存在贝叶斯准则:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="50" alt="">

对于X是离散随机变量,Y是连续随机变量,贝叶斯准则例如以下:

依据全概率准则,能够得到f(y):

Independence

连续型随机变量和离散型随机变量的独立类似:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="30" alt="">

x与y独立,说明x的发生与否不给y的发生与否提供不论什么信息。反之亦然,那么:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="20" alt="">

假设x,y相互独立,那么他们的乘积的期望等于他们期望的乘积:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="45" alt="">

另外他们的方差也呈线性:

Joint CDFs

连续随机变量的联合CDF表示为:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="50" alt="">

反之。通过二次偏微分能够求得其PDF:

More than Two Random Variables

对于大于两个连续型随机变量的概率公式能够依次类推:

DERIVED DISTRIBUTIONS

对于要求一个连续随机变量的PDF这类问题,我们时常通过绕弯路的方法先求其CDF,再通过对CDF微分求得其PDF。

对于连续随机变量X的线性函数,有:

对于单调函数:

直观的感受是f(X)乘以dh(y)等于P(X),而f(y)乘以dy也等于P(X).例如以下图:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="350" alt="">

最后回想一下这一章典型的连续型随机变量:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="560" alt="">

版权声明:本文博主原创文章。博客,未经同意不得转载。

Introduction to Probability (5) Continus random variable的更多相关文章

  1. Codeforces Round #348 (VK Cup 2016 Round 2, Div. 1 Edition) C. Little Artem and Random Variable 数学

    C. Little Artem and Random Variable 题目连接: http://www.codeforces.com/contest/668/problem/C Descriptio ...

  2. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...

  3. 【概率论】3-8:随机变量函数(Functions of a Random Variable)

    title: [概率论]3-8:随机变量函数(Functions of a Random Variable) categories: Mathematic Probability keywords: ...

  4. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part I) categories: - Mathematic - Prob ...

  5. Jmeter入门16 数据构造之随机数Random Variable & __Random函数

     接口测试有时参数使用随机数构造.jmeter添加随机数两种方式 1  添加配置 > Random Variable  2  __Random函数   ${__Random(1000,9999) ...

  6. Simple Random Sampling|representative sample|probability sampling|simple random sampling with replacement| simple random sampling without replacement|Random-Number Tables

    1.2 Simple Random Sampling Census, :全部信息 Sampling: 抽样方式: representative sample:有偏向,研究者选择自己觉得有代表性的sam ...

  7. Fuzzy Probability Theory---(3)Discrete Random Variables

    We start with the fuzzy binomial. Then we discuss the fuzzy Poisson probability mass function. Fuzzy ...

  8. Random variable

    \(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\) \(\underline{pmf:}\)probab ...

  9. Introduction to Probability (三) Independence

    两个事件独立性的定义是:事件A的发生对事件B的发生毫无影响,即从A的发生与否.我们不能猜測出B是否发生. 从概率等式的表示来看就是B在A发生的情况下发生的概率等于B发生的概率本身. 进而引出了A与B同 ...

随机推荐

  1. eclipse同步远程服务器

    eclipse里有一个强大的插件,可以直接在本地编辑远程服务器代码,Eclipse Remote System Explorer (RSE) 下载安装方法: 一.下载,高版本的eclipse可以直接下 ...

  2. scrapy中运行爬虫时出现twisted critical unhandled error错误

    1. 试试这条命令: twisted critical unhandled error on scrapy tutorial python python27\scripts\pywin32_posti ...

  3. ARM Cortex-M3内核的巨大优势

    ARM Cortex-M3相比于ARM其他系列微控制器,具有以下优势或特点: 1. 三级流水线+分支预测 ARM Cortex-M3与ARM7内核一样,采用适合于微控制器应用的三级流水线,但增加了分支 ...

  4. C语言入门(11)——switch分支语句

    C语言提供了一种用于多分支选择的switch语句, 其一般形式为: switch(表达式) { case 常量表达式1:语句1; break; case 常量表达式2:语句2; break; .... ...

  5. Openstack 的 RPC使用。

    大家都已经很熟悉了RPC了. 比如说nfs就是采用的RPC通信. 尤其SUN RPC 已经成为了C语言开发的经典一种进程间调用机制. openstack 的RPC 机制, 是基于AMQP 活着其他高级 ...

  6. 利用UIScrollView和UIPageControl实现多页图片欢迎页面

    在.h文件当中实现UIScrollViewDelegate协议,让控制器充当代理: #import <UIKit/UIKit.h> @interface RPRootViewControl ...

  7. 君子性非异也,善假于物也 - Threejs 引入TrackballControls 查看场景

    君子性非异也,善假于物也 - Threejs 引入TrackballControls 查看场景 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循" ...

  8. 新辰:4G时代怎样利用手机进行移动APP营销?

    未来的时代是4G时代,新辰手机用户的搜索量不在电脑端之下.那么,我们要怎样用手机进行营销呢?手机站点的竞价文章,要怎样去写比較好?手机站点要做专题吗?手机站点的优化思路在哪里?手机的系统不同,在不同的 ...

  9. stl之map 排序

    排序问题,STL中默认是采用小于号来排序的,因为设置int等类型做key,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数 ...

  10. .net string format

    转自:http://www.cnblogs.com/jobs2/p/3948049.html 转自:http://jingyan.baidu.com/article/48206aeaf8c52f216 ...