BZOJ3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 67 Solved: 39
[Submit][Status]
Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.
Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.
The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.
Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5
Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.
If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.
If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.
有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5
有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.
If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.
第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i.
If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.
If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
P
3
Q
1 2 5 3 4
Sample Output
5
HINT
Source
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 500+100
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
ll n,m,a[],b[],fac[];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();
fac[]=;
for(ll i=;i<n;i++)fac[i]=fac[i-]*i;
char ch;
while(m--)
{
ch=' ';
while(ch!='P'&&ch!='Q')ch=getchar();
for1(i,n)a[i]=;
if(ch=='P')
{
ll x=read()-;
for1(i,n)
{
ll t=x/fac[n-i]+,j=,k;
for(k=;j<t;k++)if(!a[k])j++;
a[k-]=;b[i]=k-;
x%=fac[n-i];
}
for1(i,n-)printf("%d ",b[i]);printf("%d\n",b[n]);
}
else
{
for1(i,n)b[i]=read();
ll x=;
for1(i,n)
{
ll j=,k;
for(k=;k<b[i];k++)if(!a[k])j++;
a[k]=;
x+=j*fac[n-i];
}
printf("%lld\n",x);
}
}
return ;
}
BZOJ3301: [USACO2011 Feb] Cow Line的更多相关文章
- 3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 82 Solved: 49[Submit ...
- 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)
http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...
- [BZOJ] 3301: [USACO2011 Feb] Cow Line
康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...
- [USACO2011 Feb] Cow Line
原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字
2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 138 Solved: 97 ...
- BZOJ3300: [USACO2011 Feb]Best Parenthesis
3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 89 Solved: 42 ...
- 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树
[BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...
随机推荐
- COM编程入门第二部分——深入COM服务器
本文为刚刚接触COM的程序员提供编程指南,解释COM服务器内幕以及如何用C++编写自己的接口.继上一篇COM编程入门之后,本文将讨论有关 COM服务器的内容,解释编写自己的COM接口和COM服务器所需 ...
- android自定义倒计时控件示例
这篇文章主要介绍了Android秒杀倒计时自定义TextView示例,大家参考使用吧 自定义TextView控件TimeTextView代码: 复制代码 代码如下: import android.co ...
- UITableView的编辑(插入、删除、移动)
先说两个方法beginUpdates和endUpdates,几点注意事项: 一般我们把行.块的插入.删除.移动写在由这两个方法组成的函数块中.如果你不是在这两个函数组成的块中调用插入.删除.移动方法, ...
- 几个常用的ps命令
1. ps aux If you are looking for a short summary of the active processes, use ps aux [root@rhel7 tm ...
- ulimit -n修改单进程可打开最大文件数目
对所有用户都生效: vi /etc/profile 添加一行如下: ulimit -n 65535 执行source /etc/profile生效,不需要重启服务器. $ source /etc/pr ...
- 获取web路径的几种方式
1.string str1 = Request.ApplicationPath.ToString(); 返回路径为:\HolterClientWeb 2.HttpServerUti ...
- IIS7.5 提示未在本地计算机上注册“Microsoft.Jet.OleDb.4.0”提供程序
在WIN7 X64平台IIS7.5,使用Asp.net连接access数据库时候,提示:未在本地计算机上注册“Microsoft.Jet.OleDb.4.0”提供程序. 说明: 执行当前 Web 请求 ...
- Lesson 3: The Amazing New Mobile Web
Lesson 3: The Amazing New Mobile Web Article 1: This is Responsive by Brad Frost 各种响应式网站设计的资源. Artic ...
- Win8节省C盘空间攻略
问题分析: 1.系统页面文件(虚拟内存)占用空间 2.自动更新的缓存文件 3.系统保护的备份文件(系统还原用的) 4.休眠文件 5.索引文件 6.桌面文件 解决办法: 1.机器是8G内存,完全不需要虚 ...
- hdu 2480 贪心+简单并查集
Steal the Treasure Time Limit: 10000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...