There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i].

Now we want to hire exactly K workers to form a paid group.  When hiring a group of K workers, we must pay them according to the following rules:

  1. Every worker in the paid group should be paid in the ratio of their quality compared to other workers in the paid group.
  2. Every worker in the paid group must be paid at least their minimum wage expectation.

Return the least amount of money needed to form a paid group satisfying the above conditions.

Example 1:

Input: quality = [10,20,5], wage = [70,50,30], K = 2
Output: 105.00000
Explanation: We pay 70 to 0-th worker and 35 to 2-th worker.

Example 2:

Input: quality = [3,1,10,10,1], wage = [4,8,2,2,7], K = 3
Output: 30.66667
Explanation: We pay 4 to 0-th worker, 13.33333 to 2-th and 3-th workers seperately.

Note:

  1. 1 <= K <= N <= 10000, where N = quality.length = wage.length
  2. 1 <= quality[i] <= 10000
  3. 1 <= wage[i] <= 10000
  4. Answers within 10^-5 of the correct answer will be considered correct.

有N个工人,第i个工人的质量是quality[i],最小工资期盼是wage[i],现在想雇K个工人组成一个支付组,返回所需的最小花费。有两个条件:

1. K个工人的质量和给他开的工资的比例是相同的。
2. 每个工人都要满足他的最小期望工资。

解法:最大堆, heapq, PriorityQueue。首先对付工资和质量的比率进行排序wage/quality,同时记录quality,也就是(wage/quality, quality),代表一个工人情况,比率越大说明工人效率越低。选定的K个人最后要按照相同的比率来支付工资,为了保证每个人的最低工资标准,只能选定比率最高的人的比率来支付工资。每个人的支付工资:wage = ratio * quality,总的支付工资:total wage = ratio * total quality,在ratio相同的情况小,总的quality越小越好。用一个变量result记录最小花费,初始为最大浮点数。循环排序好的工资比率,用一个变量qsum累加quality,用一个最大堆记录当前的quality,堆顶是最大的quality,如果堆长度等于K+1,就弹出quality最大的,同时qsum中去掉这个最大值。堆满足K个工人的时候,每次都计算qsum * ratio,和result比较取小的。

Java:

 public double mincostToHireWorkers(int[] q, int[] w, int K) {
double[][] workers = new double[q.length][2];
for (int i = 0; i < q.length; ++i)
workers[i] = new double[]{(double)(w[i]) / q[i], (double)q[i]};
Arrays.sort(workers, (a, b) -> Double.compare(a[0], b[0]));
double res = Double.MAX_VALUE, qsum = 0;
PriorityQueue<Double> pq = new PriorityQueue<>();
for (double[] worker: workers) {
qsum += worker[1];
pq.add(-worker[1]);
if (pq.size() > K) qsum += pq.poll();
if (pq.size() == K) res = Math.min(res, qsum * worker[0]);
}
return res;
}  

Python:

def mincostToHireWorkers(self, quality, wage, K):
workers = sorted([float(w) / q, q] for w, q in zip(wage, quality))
res = float('inf')
qsum = 0
heap = []
for r, q in workers:
heapq.heappush(heap, -q)
qsum += q
if len(heap) > K: qsum += heapq.heappop(heap)
if len(heap) == K: res = min(res, qsum * r)
return res

Python:

# Time:   O(nlogn)
# Space : O(n) import itertools
import heapq class Solution(object):
def mincostToHireWorkers(self, quality, wage, K):
"""
:type quality: List[int]
:type wage: List[int]
:type K: int
:rtype: float
"""
workers = [[float(w)/q, q] for w, q in itertools.izip(wage, quality)]
workers.sort()
result = float("inf")
qsum = 0
max_heap = []
for r, q in workers:
qsum += q
heapq.heappush(max_heap, -q)
if len(max_heap) > K:
qsum -= -heapq.heappop(max_heap)
if len(max_heap) == K:
result = min(result, qsum*r)
return result  

Python: O(nlogn) time,O(n) space

class Solution(object):
def mincostToHireWorkers(self, quality, wage, K):
"""
:type quality: List[int]
:type wage: List[int]
:type K: int
:rtype: float
"""
# 按比例排序,nlogn
workers = sorted([float(wage[i])/quality[i], quality[i]] for i in range(len(quality)))
res,qsum = float('inf'),0
heap = [] for i in range(len(workers)):
# 选定比例 r
r,q = workers[i]
heapq.heappush(heap,-q)
# qsum始终记录k个人的quality之和,乘以r即为最后结果
qsum += q
if len(heap) > K:
# 始终丢弃quality最大的人
qsum += heapq.heappop(heap)
if len(heap) == K:
res = min(res, qsum * r)
return res

C++:

double mincostToHireWorkers(vector<int> q, vector<int> w, int K) {
vector<vector<double>> workers;
for (int i = 0; i < q.size(); ++i)
workers.push_back({(double)(w[i]) / q[i], (double)q[i]});
sort(workers.begin(), workers.end());
double res = DBL_MAX, qsum = 0;
priority_queue<int> pq;
for (auto worker: workers) {
qsum += worker[1], pq.push(worker[1]);
if (pq.size() > K) qsum -= pq.top(), pq.pop();
if (pq.size() == K) res = min(res, qsum * worker[0]);
}
return res;
}

C++:

// Time:  O(nlogn)
// Space: O(n)
class Solution {
public:
double mincostToHireWorkers(vector<int>& quality, vector<int>& wage, int K) {
vector<pair<double, int>> workers;
for (int i = 0; i < quality.size(); ++i) {
workers.emplace_back(static_cast<double>(wage[i]) / quality[i],
quality[i]);
}
sort(workers.begin(), workers.end());
auto result = numeric_limits<double>::max();
auto sum = 0.0;
priority_queue<int> max_heap;
for (const auto& worker: workers) {
sum += worker.second;
max_heap.emplace(worker.second);
if (max_heap.size() > K) {
sum -= max_heap.top(), max_heap.pop();
}
if (max_heap.size() == K) {
result = min(result, sum * worker.first);
}
}
return result;
}
};

  

All LeetCode Questions List 题目汇总

[LeetCode] 857. Minimum Cost to Hire K Workers 雇K个工人的最小花费的更多相关文章

  1. [LeetCode] 857. Minimum Cost to Hire K Workers 雇佣K名工人的最低成本

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  2. 【LeetCode】857. Minimum Cost to Hire K Workers 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/minimum- ...

  3. 857. Minimum Cost to Hire K Workers

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  4. [Swift]LeetCode857. 雇佣 K 名工人的最低成本 | Minimum Cost to Hire K Workers

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  5. LeetCode 1000. Minimum Cost to Merge Stones

    原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/ 题目: There are N piles of stones ...

  6. LeetCode 1130. Minimum Cost Tree From Leaf Values

    原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...

  7. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  8. 雇佣K个工人的最小费用 Minimum Cost to Hire K Workers

    2018-10-06 20:17:30 问题描述: 问题求解: 问题规模是10000,已经基本说明是O(nlogn)复杂度的算法,这个复杂度最常见的就是排序算法了,本题确实是使用排序算法来进行进行求解 ...

  9. [LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

随机推荐

  1. requireJS的基本使用

    requireJS的基本使用 一.总结 一句话总结: requireJS是js端模块化开发,主要是实现js的异步加载,和管理模块之间的依赖关系,便于代码的编写和维护 1.页面加载的js文件过多的缺点是 ...

  2. Linux UART驱动分析

    1. 介绍 8250是IBM PC及兼容机使用的一种串口芯片; 16550是一种带先进先出(FIFO)功能的8250系列串口芯片; 16550A则是16550的升级版本, 修复了FIFO相关BUG, ...

  3. 动态创建自绘的CListBox注意事项

    Create(WS_VISIBLE|WS_CHILD|LBS_NOTIFY|LBS_OWNERDRAWFIXED|LBS_HASSTRINGS|LBS_NOINTEGRALHEIGHT ,rcWnd, ...

  4. golang gomobile 环境搭建

    1. 安装Go语言SDK https://www.golangtc.com/download 2. 配置系统变量这建立GOROOT和GOPATH两个目录,分别对应sdk所在目录与项目文件根目录 3.  ...

  5. python开发笔记-ndarray方法属性详解

    Python中的数组ndarray是什么? 1.NumPy中基本的数据结构 2.所有元素是同一种类型 3.别名是array 4.利于节省内存和提高CPU计算时间 5.有丰富的函数 ndarray的创建 ...

  6. Python实现描述性统计

    该篇笔记由木东居士提供学习小组.资料 描述性统计的概念很好理解,在日常工作中我们也经常会遇到需要使用描述性统计来表述的问题.以下,我们将使用Python实现一系列的描述性统计内容. 有关python环 ...

  7. Oracle EXPDP导出数据

    Oracle expdp导出表数据(带条件): expdp student/123456@orcl dumpfile=student_1.dmp logfile=student_1.log table ...

  8. C++ socket bind() 函数绑定错误

    VS2015编译错误: errorCxxxx: 'initializing' : cannot convert from 'std::_Bind<false,void,SOCKET&,s ...

  9. win7虚拟机安装

    https://blog.csdn.net/qq_16503045/article/details/81904986 iso下载地址 https://msdn.itellyou.cn/

  10. Element源码---初识框架

    序言 如果前期直接看源码,你会发现源码越看越看不懂,越看越难,觉得没有办法入手去写,其实首先想要了解项目结构最简单的方法就是通过目录 1.项目理念 2.解析目录 目前想不到更好的办法整理element ...